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We propose a general method to embed target states into the middle of the energy spectrum of a many-
body Hamiltonian as its energy eigenstates. Employing this method, we construct a translationally invariant
local Hamiltonian with no local conserved quantities, which does not satisfy the eigenstate thermalization
hypothesis. The absence of eigenstate thermalization for target states is analytically proved and numerically
demonstrated. In addition, numerical calculations of two concrete models also show that all the energy
eigenstates except for the target states have the property of eigenstate thermalization, from which we argue
that our models thermalize after a quench even though they do not satisfy the eigenstate thermalization
hypothesis.
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Introduction.—The emergence of the arrow of time, in
particular, thermalization to the equilibrium state, in macro-
scopic many-body systems from reversible microscopic
dynamics is one of the most important and profound
problems in theoretical physics. This problem has been
discussed since the early days of statistical mechanics. One
important observation is that almost all pure states in the
energy shell of any given energy are thermal. Here, a
quantum state is said to be thermal when the expectation
value of any local observable in this state coincides with
that obtained by the corresponding microcanonical ensem-
ble within a certain small error vanishing in the thermo-
dynamic limit. Fragments of this idea have already been
seen in the works of Boltzmann [1], von Neumann [2],
Tolman [3], Khinchin [4], and Schrödinger [5], and now
this idea is known as typicality of thermal equilibrium
[6–11]. Although typicality is widely believed to provide a
satisfactory characterization of thermal equilibrium, it is far
from sufficient to explain thermalization [12]. (The precise
definition of thermalization is given in [13]).
It has been well established that thermalization in an

isolated quantum system can be explained under the
assumption that every energy eigenstate is thermal [19].
This assumption is referred to as the eigenstate thermal-
ization hypothesis (ETH) [2,24–28]. (The precise definition
of the ETH is given in [13]).
It is remarked that the property known asweak ETH [29],

which states that almost all energy eigenstates are thermal,
is not enough to explain thermalization. Indeed, the weak
ETH can be proved for a broad class of translationally
invariant systems regardless of their integrability [29–31],
while observations in experiments [32,33] and numerical
simulations [29,34,35] report that integrable systems [36]
do not thermalize. Absence of thermalization in an

integrable system is attributed to an important weight of
the initial state to atypical nonthermal energy eigenstates
[29,37,38]. Thus the weak ETH does not guarantee
thermalization, and therefore the ETH has been considered
to be a key ingredient for thermalization [39–41].
Many numerical simulations report that the ETH is

valid if the Hamiltonian of a many-body quantum system
satisfies the following three conditions: (i) translation
invariance (in particular, no localization [42]), (ii) no
local conserved quantity, and (iii) local interactions
[28,29,35,46–51]. Here, the word local stands for both
few body and short range. Interestingly, all known exam-
ples not satisfying the ETH violate at least one of (i)–(iii).
Integrable systems [29,35,46,47] and systems with local
symmetries [52] violate (ii), and systems with Anderson
localization [53,54] or many-body localization [55,56]
violate (i). It is noteworthy that these examples do not
thermalize. It may be then tempting to conjecture that the
above (i)–(iii) are necessary and sufficient conditions for
the validity of ETH and also for the system to thermalize.
In this Letter we construct counterexamples of this

conjecture. We first propose a general method of embed-
ding, and then, by using this method, we construct two
concrete models that satisfy the three conditions (i)–(iii),
but can be proved rigorously to violate the ETH [13].
Moreover, we also argue that these models exhibit thermal-
ization after a physically plausible quench. Our findings not
only reveal the richness of quantum many-body systems,
but also lead to reconsideration of the conventional beliefs
on the mechanism of thermalization.
Method of embedding.—Here we explain the procedure

of embedding. Consider a quantum system on a discrete
lattice with a set of sites Λ with Hilbert space H. Let P̂i
(i ¼ 1; 2;…; N) be arbitrary local projection operators on
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H which do not necessarily commute with each other. We
usually take N ¼ OðjΛjÞ, in particular, N ¼ jΛj. We define
a subspace T ⊂ H as a subspace spanned by the set of
states jΨi ∈ H satisfying

P̂ijΨi ¼ 0 ð1Þ
for any i. We assume that T contains at least one non-
vanishing state. The states in T are target states to be
embedded.
Let ĥi (i ¼ 1; 2;…; N) be arbitrary local Hamiltonians ĥi,

and let Ĥ0 be a Hamiltonian which satisfies ½Ĥ0; Pi� ¼ 0 for
i ¼ 1;…; N. We then construct the desired Hamiltonian as

Ĥ ≔
X

i

P̂iĥiP̂i þ Ĥ0: ð2Þ

Since P̂iĤjΨi ¼ P̂iĤ
0jΨi ¼ Ĥ0P̂ijΨi ¼ 0 for jΨi ∈ T , we

find that T is invariant under the map with Ĥ, and thus the
Hamiltonian Ĥ has dim T energy eigenstateswithinT . For a
special case inwhich Ĥ0 ¼ 0 and all the eigenvalues of ĥi are
non-negative, this Hamiltonian is regarded as a frustration-
free Hamiltonian, which is seen in Ref. [57]. In general, the
eigenenergies of the embedded states are in themiddle of the
energy spectrum, and this procedure can be regarded as a
general method of embedding the target states T into the
middle of the energy spectrum of a nonintegrable local
Hamiltonian.
An embedded state jΨi satisfying Eq. (1) is a highly

anomalous state in the sense that a local projection operator
P̂i takes exactly zero expectation value with no fluctuation,
which is unexpected behavior in a thermal state. This
observation leads to a crucial result that the ETH is always
violated regardless of fĥig. In fact, in line with the above
intuition, the violation of the ETH is rigorously proven
when Ĥ0 is also written as Ĥ0 ¼ P

iĥi
0 with local terms

fĥi0g, and both fĥig and fĥi0g are bounded operators [13].
In the following, we express the eigenstates of Ĥ as jϕji

by sorting them by energy (Ej−1 ≤ Ej ≤ Ejþ1). We also
write the number of total eigenstates and those in T as Ntot
and Nex, respectively.
Model 1: two dimer states.—We now construct the first

counterexample to the ETH. Consider a one-dimensional
spin chain of S ¼ 1=2 with even length L with the periodic
boundary condition. The sites are labeled as i ¼ 1; 2 � � � ; L,
and we identify i ¼ 0, −1 to i ¼ L, L − 1, and i ¼ Lþ 1,
Lþ 2 to i ¼ 1, 2. The spin operator on the site i is denoted
by Ŝi. We introduce the total spin operator of sites i − 1, i
and iþ 1 denoted by

Ŝtot;3i ¼ Ŝi−1 þ Ŝi þ ·Ŝiþ1; ð3Þ

whose length Stot;3i takes 3=2 or 1=2 [58]. We then set the
projection operator P̂i as that onto the subspace with
Stot;3i ¼ 3=2, which we denote by P̂S¼3=2

i . In terms of spin
operators, P̂S¼3=2

i is expressed as

P̂S¼3=2
i ¼ 2

3
ðŜi−1 · Ŝi þ Ŝi · Ŝiþ1 þ Ŝi−1 · Ŝiþ1Þ þ

1

2
: ð4Þ

The analyses on the Majumdar-Ghosh model [59],
whose Hamiltonian is ĤMG ≔

P
iP̂

S¼3=2
i , tell that ĤMG

has two dimer states as its ground states with zero energy:

jΨ1
MGi ≔

YL=2

n¼1

jv2n−1;2ni; jΨ2
MGi ≔

YL=2−1

n¼0

jv2n;2nþ1i; ð5Þ

where jvi;ji is the valence bond (spin singlet),

jvi;ji ≔
1ffiffiffi
2

p ðj↑iij↓ij − j↓iij↑ijÞ: ð6Þ

Because the total angular momentum of a spin singlet is 0,
the total angular momentum of three spins including a spin-
singlet pair is always 1=2, which implies that these two
states are ground states of ĤMG: ĤMGjΨi

MGi ¼ 0 (i ¼ 1, 2).
In addition, it is known that the ground states are only these
two [60,61].
By setting Ĥ0 ¼ 0, fĥig as translation invariant local

terms, and tuning the origin of ĥi properly, the Hamiltonian

Ĥ1 ≔
XL

i¼1

P̂S¼3=2
i ĥiP̂

S¼3=2
i ð7Þ

has two dimer states jΨi
MGi (i ¼ 1, 2) as its energy

eigenstates with zero energy, which settles in the middle
of the energy spectrum. These two dimer states span the
Hilbert subspace T , and they do not represent a thermal
state of this Hamiltonian [13]. Hence, this model is a
counterexample to the ETH. It is worth noting that this
model in general satisfies the conditions (i)–(iii) [62]. In
particular, we emphasize that a local projection operator
P̂S¼3=2
i is not a local conserved quantity.
Numerical calculations reveal that the two dimer states

are not thermal, but all the other eigenstates are thermal. We
set the local Hamiltonian ĥi as

ĥi ≔
X

α¼x;y;z

½JαðŜαi−1Ŝαi þ Ŝαi Ŝ
α
iþ1Þ

þ J0αðŜαi−2Ŝαi þ Ŝαi Ŝ
α
iþ2Þ − hαŜ

α
i � ð8Þ

with Jx ¼ Jy ¼ 1, Jz ¼ −0.6, J0x ¼ −0.8, J0y ¼ J0z ¼ 0,
hx ¼ 0.3, hy ¼ 0, hz ¼ 0.1. Full diagonalization results

of
P

ihϕjjP̂S¼3=2
i jϕji=L versus energy density Ej=L for all

energy eigenstates are depicted in the left panel of Fig. 1.
The outlying point (0,0) corresponds to the two degenerate
dimer states. We see that except for these two states the
fluctuation reduces as the system size increases, which is
consistent with the claim that other energy eigenstates are
thermal.
The ETH is numerically studied by considering the

following indicator:
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r½Ô� ≔ max
j
jhϕjjÔjϕji − hÔiEj;ΔE

mc j; ð9Þ

where Ô is a local observable and j runs all possible energy
eigenstates in some fixed range of the energy density.

h·iEj;ΔE
mc represents the ensemble average in the micro-

canonical ensemble with energy between Ej − ΔE and
Ej. If r tends to 0 as the system size increases, it implies
that the ETH is satisfied.
Here, for the Hamiltonian Ĥ1 and Ô ¼

ð1=LÞPL
i¼1 P̂

S¼3=2
i [63], we compute r in the energy range

−0.1 ≤ Ej=L ≤ 0.1, which we call r1. The microcanonical
energy width is set as ΔE ¼ 0.01

ffiffiffiffi
L

p
. In the right panel of

Fig. 1, we plot r1 versus system size L for all eigenstates
(red) and all eigenstates except two dimer states (green).
The former does not decrease with increase of L, while the
latter indeed does, which is expected behavior for thermal
eigenstates. Our numerical results clearly show that the
Hamiltonian Ĥ1 has two nonthermal eigenstates jΨi

MGi
(i ¼ 1, 2) and 2L − 2 thermal eigenstates.
Model 2: exponentially many nonthermal states.—We

can also embed exponentially many target states [i.e.,
Nex ¼ OðeLÞ]. We demonstrate this through constructing
the second counterexample to the ETH. Consider a one-
dimensional spin chain of S ¼ 1 with length L with the
periodic boundary condition. The state of each spin is given
by a linear combination of three eigenstates of Ŝz expressed
as j1i, j0i, and j − 1i. The label of sites is same as that in
model 1. We now introduce a projection operator to the
subspace with Szi ¼ 0 as P̂0

i ≔ 1 − ðŜzi Þ2 and its compli-
ment as Q̂i ≔ 1 − P̂0

i ¼ ðŜzi Þ2. Using this, we define a
nonlocal operator Q̂ ≔

Q
L
i¼1 Q̂i, which takes 1 if and only

if all spins are linear combinations of j � 1i. We also
introduce pseudo Pauli matrices between two states j1i and
j − 1i defined as

~σx ≔ j1ih−1j þ j − 1ih1j; ð10Þ

~σy ≔ −ij1ih−1j þ ij − 1ih1j; ð11Þ

~σz ≔ j1ih1j − j − 1ih−1j: ð12Þ

Noting that ½P̂0
i ; ĥi−1;iþ1� ¼ 0 and ½P̂0

i ; Ĥ
0� ¼ 0 are satis-

fied for ĥi−1;iþ1 with its support fi − 1; iþ 1g and Ĥ0 as a
function of ~σα (α ¼ x, y, z), we construct a Hamiltonian

Ĥ2 ≔
XL

i¼1

ĥi−1;iþ1P̂
0
i þ Ĥ0; ð13Þ

where we used a relation P̂iĥiP̂i ¼ ĥiP̂i for ½ĥi; P̂i� ¼ 0.
This Hamiltonian has 2L eigenstates in the subspace with
Q ¼ 1, and these eigenstates span the Hilbert subspace T .
With the same discussion for model 1, we conclude that
model 2 also violates the ETH even though it satisfies the
conditions (i)–(iii) [62].
Numerical calculations reveal that the eigenstates with

Q ¼ 1 are not thermal, while the eigenstates with Q ¼ 0

are thermal. We set the local Hamiltonian ĥi−1;iþ1 and Ĥ
0 as

ĥi−1;iþ1 ¼
X

α¼x;y;z

JαŜ
α
i−1Ŝ

α
iþ1 − hαðŜαi−1 þ Ŝαiþ1Þ þD ð14Þ

Ĥ0 ¼
XL

i¼1

X

α¼x;y;z

J0α ~σαi ~σ
α
iþ1 − h0α ~σαi ð15Þ

with Jx ¼ −0.8, Jy ¼ 0.2, Jz ¼ 0.4, hx ¼ 1, hy ¼ 0,
hz ¼ 0.3, D ¼ −0.4, J0x ¼ −0.6, J0y ¼ 0.4, J0z ¼ 0.8,
h0x ¼ h0y ¼ 0, h0z ¼ −0.2. First, we compute the expectation
value of the x-component of the spin per siteP

ihϕjjŜxi jϕji=L versus energy density Ej=L, which is
plotted in the left panel of Fig. 2. The horizontal bar atP

ihϕjjŜxi jϕji=L ¼ 0 corresponds to the embedded eigen-
states with Q ¼ 1. Except for these embedded states, the
fluctuation reduces as the system size increases, which is
consistent with the claim that all energy eigenstates with
Q ¼ 0 are thermal.
We also consider the indicator of the ETH defined by

Eq. (9) for the Hamiltonian Ĥ2 with Ô ¼ ð1=LÞPiŜ
x
i ,

which we call r2. Here, j in Eq. (9) runs all possible energy
eigenstates with −0.5 ≤ Ej=L ≤ 0 and ΔE is set to 0.1

ffiffiffiffi
L

p
.

The results are depicted in the right panel of Fig. 2 for all
eigenstates (red) and all eigenstates except the embedded
eigenstates with Q ¼ 1 (green). These plots ensure that all
eigenstates except the 2L embedded ones are thermal, while
the ETH is not satisfied. Here, we have presented the result
for the special choice of Ô ¼ ð1=LÞPiŜ

x
i , but the same

conclusion is confirmed for other choices such
as Ô ¼ ð1=LÞPiŜ

z
i Ŝ

z
iþ1.

We note that although there are exponentially many
nonthermal states Nex ¼ OðeLÞ, the weak ETH still holds
because the fraction of the nonthermal states is
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exponentially small: Nex=Ntot ¼ ð2=3ÞL ¼ Oðe−LÞ. The
weak ETH says that the variance of a local observable
Ô defined as

VðÔÞ ≔ 1

N½−0.5;0�

X

j

ðhϕjjÔjϕji − hÔiEj;ΔE
mc Þ2 ð16Þ

converges to 0 in the thermodynamic limit L → ∞, where j
runs all possible energy eigenstates with −0.5 ≤ Ej=L ≤ 0

and the number of such energy eigenstates is denoted by
N½−0.5;0�. Our model violating the ETH shows the expo-

nential decay of the standard deviation V1=2 of ð1=LÞPiŜ
x
i

and ð1=LÞPiŜ
z
i Ŝ

z
iþ1 (see Fig. 3). This means that the

exponential decay of VðÔÞ with respect to L does not
necessarily imply the ETH, which is contrary to the
previous argument [49].
Thermalization.—All existing models without the ETH

including integrable systems and many-body localization
generally do not thermalize after a quench. This is why
some researchers believe that the ETH is essential for
thermalization. However, we give a good reason to consider

that our models indeed thermalize after a physically
plausible quench, which we refer to as a quench from a
system with finite temperature.
We take model 2 as an example. If all the sites i are in the

sector of Qi ¼ 1 in the initial state, the system does not
thermalize. However, since all the eigenstates with Q ¼ 0
are thermal, we claim that even a single defect of Qi ¼ 0 is
enough to thermalize the system.
Consider a quench to Ĥ2 from a thermal state of another

Hamiltonian denoted by jψ inii. As shown in Supplemental
Material [13], the expectation value of ð1=LÞPL

i¼1 P̂
0
i in a

thermal state is strictly positive, and its variance converges
to 0 in the thermodynamic limit. In contrast, all the
embedded eigenstates always take 0 with the measurement
of ð1=LÞPL

i¼1 P̂
0
i , which implies that jψ inii has quite a

small weight on the nonthermal embedded states, and the
system must thermalize. We, however, note that for
relatively small system size, the embedded states with
Q ¼ 1 can have relatively large weight, and in that case the
system does not thermalize.
Discussion.—We proposed a systematic procedure to

construct models with the conditions (i) translation invari-
ance, (ii) no local conserved quantity, and (iii) local
interaction, but not satisfying the ETH, contrary to the
common belief. Our method enables us to embed the
target states as energy eigenstates of the Hamiltonian with
(i)–(iii) in the middle of the energy spectrum, and these
embedded states are generally nonthermal [13]. One
advantage of our approach lies in the fact that the violation
of the ETH is analytically proven, in contrast to numerical
simulations which are inevitably affected by the finite size
effect (see also a series of discussions on the Ising model
with both longitudinal and transverse magnetic fields
[48,64,65], where slowly decaying observables disturb
access with numerical simulations).
On the basis of the numerical result that all the energy

eigenstates except embedded states are thermal, we argued
that the constructed models thermalize after a physically
plausible quench. The presence of nonthermal energy
eigenstates implies the existence of an initial state which
fails to thermalize [41], but we do not expect to pick up
such an initial state through a finite-temperature quench for
sufficiently large system sizes since even a single defect can
completely recover the thermal property. Our results
elucidate the fact that the role of thermal energy eigenstates
in the mechanism of thermalization is not as simple as
expected.
The second model contains exponentially many non-

thermal states, which is usually expected to be a property of
integrable systems. Our result implies that the number of
nonthermal states does not determine the fate of the
presence or absence of thermalization. To understand
thermalization, the property of preparable initial states
(e.g., weight to nonthermal eigenstates) should also be
taken into consideration.
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Apart from the study on thermalization, our procedure
sounds a fruitful methodology to obtain interesting
Hamiltonians. Our procedure can embed any state that is
a ground state of a frustration-free Hamiltonian. Both the
matrix-product states (MPS) and the projected-entangled-
pair states (PEPS) are known to be written as a ground state
of a frustration-free Hamiltonian [66,67], and thus they can
be embedded in the middle of the energy spectrum of a
many-body Hamiltonian. Our method opens the way to
import many brilliant achievements on the ground state of
quantum systems to thermal (excited) states.
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