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von Neumann’s classic “multiplexing” method is unique in achieving high-threshold fault-tolerant
classical computation (FTCC), but has several significant barriers to implementation: (i) the extremely
complex circuits required by randomized connections, (ii) the difficulty of calculating its performance in
practical regimes of both code size and logical error rate, and (iii) the (perceived) need for large code sizes.
Here we present numerical results indicating that the third assertion is false, and introduce a novel scheme
that eliminates the two remaining problems while retaining a threshold very close to von Neumann’s ideal
of 1=6. We present a simple, highly ordered wiring structure that vastly reduces the circuit complexity,
demonstrates that randomization is unnecessary, and provides a feasible method to calculate the
performance. This in turn allows us to show that the scheme requires only moderate code sizes, vastly
outperforms concatenation schemes, and under a standard error model a unitary implementation realizes
universal FTCC with an accuracy threshold of p < 5.5%, in which p is the error probability for 3-qubit
gates. FTCC is a key component in realizing measurement-free protocols for quantum information
processing. In view of this, we use our scheme to show that all-unitary quantum circuits can reproduce any
measurement-based feedback process in which the asymptotic error probabilities for the measurement and
feedback are ð32=63Þp ≈ 0.51p and 1.51p, respectively.
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The problem of performing classical computing reliably
with unreliable logic gates is referred to as fault-tolerant
classical computation (FTCC). The first method for realizing
FTCC was devised by von Neumann, who called it multi-
plexing [1]. It achieves what may be the highest possible
error threshold (the maximum stable componentwise error
rate), but has hitherto been viewed as impracticable. This is
due to an apparent need for high redundancy (number of
fundamental components required to construct a noise-free
logical gate), the need to continually connect and reconnect
bits “at random” at a potentially large spatial separation,
and the difficulty of both analytically calculating the
performance for moderate code sizes and simulating the
performance in the low-error regimes required for reliable
computation [1–9]. The field of probabilistic cellular
automata was partially motivated by addressing the second
problem, but has not, to date, produced a complete and
feasible FTCC scheme [10–21]. A second method for FTCC
was developed more recently in the context of quantum
computing, and involves “concatenating” error-correction
codes and logic gates [22–46]. However, the concrete FTCC
schemes developed using concatenation require high redun-
dancy and connections between widely separated code bits,
and have not to-date achieved the high thresholds of multi-
plexing schemes [47,48].
We are interested in FTCC here primarily because of

its central role in the question of the importance of

measurements in realizing physical processes and control
protocols. From a fundamental point of view, measurements
play no special role in physical processes: all dynamics
generated by measurement and feedback processes (includ-
ing those involving postselection [49]) can be reproduced by
unitary evolution [52]. Consequently the utility of measure-
ments in any physical protocol arises only from technologi-
cal constraints. For fault-tolerant quantum computation
(FTQC), in which all high-threshold schemes to date employ
measurements [29,38,44,53], the constraint is a fixed error
probability p for all quantum gates and measurements.
Interest in measurement-free (or measurement-light)

quantum computing [54–58] is motivated by the fact that
implementing large numbers of measurements on many
qubits requires an additional technological overhead
beyond that of unitary circuits. To this end schemes have
been devised in which measurements can be noisy and/or
slow [54,55], and quite recently automata-based methods
were introduced for eliminating both measurements and the
high processing overhead involved in correcting surface
codes [57,58]. Here our purpose is to determine the ability
of unitary circuits to perform the functions of arbitrary
measurement procedures.
For the purposes of FTQC (or any quantum process

subjected to errors) the physical addition provided by
measurements is amplification: measurements are defined
as producing a result that can be processed on a classical
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digital computer. The resulting error-free classical process-
ing is the sole advantage of measurements. As a result, the
question of the importance of measurement to quantum
processes is intimately related to how well mesoscopic gates
(those with error p) can perform such error-free classical
processing, and thus to the fundamental limits of FTCC.
Our first main result is an explicit scheme for FTCC with

unitary gates that largely solves the long-standing problems
with von Neumann’s multiplexing method, while achieving
almost the same high threshold. We then apply our FTCC
protocol to the problem of using unitary circuits to
reproduce a general measurement and feedback process.
Our second main result is that, with a threshold of
p ¼ 2.8%, unitary circuits can do this and achieve effective
measurement and feedback errors close to p. It should be
noted that this result does not imply alone that a given
measurement-based protocol can be replaced by a unitary
one; additional technological factors, such as the time taken
by the processing circuits, may also play an important role
in an implementation. This result does show that unitary
circuits can effectively realize high-fidelity measurements,
and that perfect classical processing within quantum
mesoscopic circuits is entirely feasible. They also furnish
a new tool for understanding the power of unitary protocols.
Before we present our error-correction scheme, it is

worth discussing the key issues with von Neumann’s
method in more detail. von Neumann’s scheme uses a
repetition code, and corrects errors in the code by applying
a “majority counting” gate to triples of code bits. The
output of this gate is a single bit whose value is that of the
majority of the three input bits. The output bit is then
copied to produce three bits that are the corrected versions
of the input bits. As noted above, one of the primary
problems with the scheme is the need to reduce correlated
errors by randomly selecting triples across multiple repe-
titions of the error correction. This virtually prohibits the
use of fixed wiring for the gate interconnections due to the
complexity of the resulting circuits. Furthermore, an appeal
to truly “random” fixed connections in a computational
circuit implies the need for unique random reconnections
at every correction step of a computation of any length,
something that is clearly infeasible. A possible solution is
to dynamically reconnect the gates at each correction step.
While such a process cannot be used in a fundamental
theory of fault tolerance (the logic circuits that generate and
store the new connections will introduce further errors), it
could be used to implement FTCCwith mesoscopic circuits
by using error-free macroscopic classical computers to
perform the dynamical reconnection. Nevertheless, doing
so requires the significant additional overhead of complex
classical control circuits that allow any triple of code bits to
interact at any time. Our solution completes the theory of
multiplexing by eliminating randomness altogether and
allowing error correction to be performed by a small set of
fixed connections within the code, which are recycled over

a short sequence. We note that our scheme has a single
restriction over von Neumann’s, which is that the code size
must be a power of 3.
A further advantage we provide over randomized multi-

plexing is that with multiplexing the logical error rate
for moderate, realistic code sizes can be obtained only by
numerical simulation. This is problematic because (i) a
simulation must generate at least tens of logical failures to
obtain any accuracy, and (ii) for realistic computing
applications the error probability per logical bit must be
very small (e.g., 10−12). As a result the problem would be
challenging even for modern large-scale parallel machines.
We now describe our FTCC scheme, beginning with the

logic gates from which it is built.
Elementary 3-bit gates.—We define a MAJ1 gate (the

name deriving from “majority”) as von Neumann’s 3-bit
majority counting gate, described above. We define a gate
AMP (short for “amplification”) that takes in one bit and
outputs three copies of it. Finally, we define a gateMAJ3 as a
MAJ1 that has three outputs, being the usual MAJ1 output
bit and two additional copies of it. Thus theMAJ3 is aMAJ1
followed by anAMP.Wemust be able to implement all these
gates unitarily, so we present explicit unitary versions of
them in Fig. 1. These unitary versions are shown in terms of
CNOT and Toffoli gates [59], but our error model treats the
MAJ1 and AMP as elementary 3-bit unitary processes.
Error-correcting scheme.—The logical values of bits on

which we wish to do computation are stored in a simple
repetition code of size 3nþ1 where n is a non-negative integer
called the level of the code. These bits can be arranged in a
hypercube of dimension nþ 1 with side length 3. Error
correction is now achieved by applying n parallel MAJ3
gates along each of the nþ 1 axes in sequence. This implies
that the logical value can be equivalently thought of as stored
in a network of 3n MAJ3 gates that interact sequentially
along each axis of an n-dimensional hypercube [49].
Performance of the error-correcting circuit.—Our error

model is defined by assigning, in the standard way [29,60],
a total intrinsic error probability, p, to each of the 3-bit
unitary quantum gates MAJ1 and AMP. To determine
the performance of the error-correction circuit we need
the probability, ε, that there is an error in at least one of the
output lines of the MAJ3. Given the quantum error model,

FIG. 1. Unitary constructions for the (a) AMP and (b) MAJ3
gates defined in the text. The unitary version of AMP copies the
input qubit in the computational basis by applying a controlled-
NOT (CNOT) gate from this input to each of two qubits prepared in
the 0 state. The dashed box is the MAJ1 gate.
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along with an additional error of ð2=3Þp in each output to
account for errors in the connecting wires and reset
locations, we obtain a strict overestimate for ε to be
ð52=21Þp ≈ 2.3p [61]. We need to obtain the steady-state
logical error probability, pss, that is maintained by repeated
applications of the correction circuit [62]. Calculating pss
is nontrivial; however, straightforward simulations are
impractical as discussed above. We are able to calculate
pss for n ¼ 2 and n ¼ 3 (codes with 27 and 81 bits,
respectively) by mapping the error dynamics to a jump
process that has only 3 effective states for n ¼ 2 and 7 for
n ¼ 3 (details are given in the Supplemental Material [49]).
In Fig. 2 we plot pss as a function of ε for n ¼ 2 and 3.
We see from these plots that the error decreases doubly
exponentially with n for n ¼ 2 and 3, and so we expect this
to continue for larger values of n. This shows a (gatewise)
redundancy which scales as 3n. In comparison, the redun-
dancy for typical concatenation schemes is 21n [47,48].
We note that for p ¼ 0.4% and n ¼ 3 one has pss ¼
1.5 × 10−11; thus, small values of n would likely suffice for
applications. We obtain a lower bound on the threshold for
n ¼ 3, shown in Fig. 3(a), to be ε ≈ 15%, very close to von
Neumann’s value of 1=6.
Performance of von Neumann’s multiplexing.—In the

inset in Fig. 2 we compare the performance of von
Neumann’s scheme to ours for a code size of 81 bits.
As noted above, this calculation is limited to relatively large
error rates. We see that the performance of von Neumann’s
scheme oscillates about ours, and thus achieves similar
performance at high logical error rates. This provides
support for the conjecture that a randomized scheme should
perform at least as well as ours. Nevertheless, one cannot
merely extrapolate to small error rates, as made especially
clear by the oscillatory behavior.
Threshold for universal computation.—Reliable MAJ1

and AMP gates can be used for universal computation.

A MAJ1 gate can be used as an AND or OR gate. An AMP
gate is composed of CNOTs, which can be used as NOT gates
and/or simulated line splitting. (Details can be found in
Refs. [1,49].) The most complex construction in our
scheme is a coded MAJ1 gate, which consists of a trans-
versal application of MAJ1 gates on three coded bits. The
bitwise error rate in an error correcting network at threshold
is 1=2. Since the output of a three-input computational gate
is necessarily noisier than any one of the inputs, we must
have input errors less than 1=2, so the componentwise
threshold for universal computation must be smaller than
1=6. We recognize the threshold as the basic error rate at
which error rates in the outputs of the MAJ1 gates are equal
to 1=2. Taking into account the steady-state bitwise error
rate of our coded input bits, we find the threshold for
universal computation to be p ¼ 5.5%, or ϵ ≈ 12.7% [49].
Scaling of wire length with code size.—A crucial issue

for fault-tolerant computation is how the wire length
required by the correction and computation circuits
increases with code size. Since it is reasonable to suggest
that fundamental error rates will increase exponentially
with the wire length (the distance between interacting gates
or bits), an error correction scheme must be compatible
with a compact wiring. Part of our solution is the obser-
vation, noted above, that using our method code sizes of no
more than n ¼ 4 (and likely n ¼ 3) can be expected to be
sufficient for any application. If we reroute the wiring from
the gate outputs to the inputs, the full error correction
circuit for n ¼ 3 can be executed with a cube of 27 MAJ3
gates. The rerouting need only span the cube separately in
each direction, giving a wire length of 2 (in units of the
distance between adjacent gates). The transversal AND gate
for logic between coded bits, when we place three code
cubes in a row, requires wires of length 3. For n ¼ 4 there
are also very efficient arrangements. For a single coded bit

FIG. 2. (a) Solid line: The inverse of the logical error proba-
bility, pss, for our error correction circuit with a 27-bit code.
Dashed line: 1=pss for a hypothetical concatenation scheme with
a threshold of 1=6 [49,59]. (b) Solid line: 1=pss for our scheme
with an 81-bit code. Dashed lines: 1=pss for hypothetical
concatenation schemes with thresholds of 1=6 (upper line),
and 1=7 (lower line). (No such concatenation schemes are known
to date.) The inset shows the performance of von Neumann’s
scheme (dark line) against the new scheme (light line) for 81 bits,
for a range of ε in which it is feasible to simulate.

FIG. 3. (a) The solid line is ε and the dashed line is the
resulting error probability for a code with n ¼ 3. The point at
which these lines cross gives the threshold. (b) Here we show
the wiring lengths required for a code with n ¼ 4 (243 bits).
Each dot and circle represents a MAJ3 gate, so that the squares
indicate a cube of 27 MAJ3 gates (an n ¼ 3, 81-bit code)
viewed from the top. The blue line encircles three of these
cubes that form a single n ¼ 4 code block. The curved solid
lines are examples of wires required to implement an AND gate
on the two code blocks consisting of black dots. The dashed
lines are examples of wires required to implement an error
correction on an individual code block.
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we now require three cubes of 27 MAJ3 gates for error
correction. In Fig. 3(b) we show that, arranging these three
cubes in an “L” configuration, the longest wires required
for universal computation have length 3

ffiffiffi

2
p

. Only a
moderate increase in overall distance is therefore required
to implement FTCC. One could alternatively use an array
of static qubits rather than static gates. Under this archi-
tecture, the error-correction circuits are similarly compact;
each qubit needs to interact with only 2ðnþ 1Þ others [63].
Replacing measurements with unitary circuits.—The

scheme for efficient FTCC presented above allows us to
obtain unitary circuits that perform the role of measurement
and feedback processes, and do so with very low error rates.
First, we note that the role of every measurement in any
physical protocol involves no more than (i) classical
processing of the measurement result, and (ii) at some
point in the process, the use of the processed result to apply
an operation to a quantum system. We can assume the
feedback operation is unitary without loss of generality. We
will also assume, without significant loss of generality, that
the quantum systems involved are qubits.
To reproduce the action of a “black box” that implements

measurement and feedback our unitary circuit must
(i) encode the qubits to be measured (the input qubits) so
that the classical information they contain can be processed
by our FTCC protocol, (ii) perform the processing, (iii) use
the processed information (the output qubits), which is
stored as a repetition code, to apply a unitary gate to one
or more “target” qubits. Steps (i) and (iii) correspond to the
processes of measurement and feedback, respectively. In step
(i), any error in the encoded logical bits introduced by the
encoding procedure is precisely equivalent to the measure-
ment error. For step (iii), since we must use the state of a
single qubit as a control for the feedback operation, any error
by which this qubit deviates from the encoded logical output
bit is simply an additional probability of error over that of the
feedback applied by a classical device.
To encode the information stored in the computational

basis of a qubit we use a circuit consisting of AMP gates.
An AMP gate is used to make three copies of the initial
qubit in the computational basis, and then each of these is
tripled again by feeding it into an AMP gate. By repeating
this process we produce 3nþ1 qubits that constitute the bits
of our repetition code. The key quantity of interest is the
probability, penc, that the resulting code fails to correctly
reflect the state of the bit contained by the initial qubit
(more precisely, the probability that the code bits are left in
a joint state that will fail to be properly corrected by the
error-correction circuits). Calculating penc is a complex
task, since we must take into account the correlations
formed between the code bits or qubits during the encod-
ing, as well as the action of our error-correction procedure.
We obtain, for n ¼ 3, a strict overestimate of the encoding
error as a 9th-order polynomial in p, the full expression for
which is given in the Supplemental Material [49]. The most

important property of penc is pcrit, defined as the value of p
for which penc ¼ p, and for which penc < p whenever
p < pcrit. The encoding circuit for n ¼ 3 has pcrit ¼ 2.8%,
and when p ≪ 2.8% the relationship is penc ≈ ð32=63Þ
p ≈ 0.51p. This encoding error is precisely the measure-
ment error of the black box being simulated.
Once the classical information in the qubits input to

our unitary circuit has been encoded, it can be processed
essentially error-free using the error-correction and com-
putation methods present above. Thus it remains to apply
an operation tom qubits that is conditional on the processed
information. The bits containing this information are stored
in our repetition code. To ensure that the feedback correctly
mimics the operation of feedback applied by a classical
controller we must take account of the following: (i) a
classical controller is assumed to be error-free, and so does
not introduce errors that are correlated between them target
bits; (ii) the feedback operation must be implemented with
a single control qubit for each target qubit because we are
restricted to mesoscopic circuits. Fortunately we can satisfy
both demands. Transversal CNOT operations can copy
logical bits fault tolerantly. This can provide an ensemble
of m logical bits that are essentially correct (to the basic
logical failure rate). Applying a series of MAJ1 gates to
each logical bit (using nþ 1 iterations for a code at level n),
we can provide m qubits with independent errors which
approach (to first order in p) the individual failure rate of the
MAJ1 [55].Using these qubits as the controls for the feedback
operations gives an error of ð32=63Þp ≈ 0.51p over that of
the classical feedback operation. Such an additional error in
the feedback appears to be a necessary consequence of the use
of mesoscopic circuits for this purpose.
Here we have presented a scheme for fault-tolerant

classical computation that significantly outperforms all
previous schemes. In doing so we have shown that multi-
plexing neither requires randomization nor large code sizes
as have previously been thought. We have used this new
scheme to show that unitary mesoscopic circuits can
perform all functions of measurement with errors that
remain very close to p.
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error rate for any module which acts as a MAJ3. The latter
depends on our unitary implementation of the MAJ3 and our
quantum error model [49].

[62] Decoding the logical state (reading it out) is not required for
our application here, but we treat it in the Supplemental
Material [49].

[63] For n ¼ 3 with the qubits arranged in a square, the
maximum number of qubits that lie between any two that
must interact is 5, always along straight lines in the array. If
three dimensions are utilized, this same maximum distance
still applies for universal computation at n ¼ 4, which can
be accomplished with a 9 × 9 × 9 array.
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