
Neural Decoder for Topological Codes

Giacomo Torlai and Roger G. Melko
Department of Physics and Astronomy, University of Waterloo, Ontario N2L 3G1, Canada

and Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
(Received 20 October 2016; published 18 July 2017)

We present an algorithm for error correction in topological codes that exploits modern machine learning
techniques. Our decoder is constructed from a stochastic neural network called a Boltzmann machine,
of the type extensively used in deep learning. We provide a general prescription for the training of the
network and a decoding strategy that is applicable to a wide variety of stabilizer codes with very little
specialization. We demonstrate the neural decoder numerically on the well-known two-dimensional toric
code with phase-flip errors.

DOI: 10.1103/PhysRevLett.119.030501

Introduction.—Much of the success of modern machine
learning stems from the flexibility of a given neural network
architecture to be employed for a multitude of different tasks.
This generalizability means that neural networks can have
the ability to infer structure from vastly different data sets
with only a change in optimal hyperparameters. For this
purpose, the machine learning community has developed a
set of standard tools, such as fully connected feed forward
networks [1] and Boltzmann machines [2]. Specializations
of these underlie many of the more advanced algorithms,
including convolutional networks [3] and deep learning
[4,5], encountered in real-world applications such as image
or speech recognition [6].
These machine learning techniques may be harnessed for

a multitude of complex tasks in science and engineering
[7–17]. An important application lies in quantum computing.
For a quantum logic operation to succeed, noise sources that
lead to decoherence in a qubit must be mitigated. This can be
done through some type of quantum error correction—a
process where the logical state of a qubit is encoded
redundantly so that errors can be corrected before they
corrupt it [18]. A leading candidate for this is the imple-
mentation of fault-tolerant hardware through surface codes,
where a logical qubit is stored as a topological state of an
array of physical qubits [19]. Random errors in the states of
the physical qubits can be corrected before they proliferate
and destroy the logical state. The quantum error correction
protocols that perform this correction are termed “decoders,”
and must be implemented by classical algorithms running on
conventional computers [20,21].
In this Letter we demonstrate how one of the simplest

stochastic neural networks for unsupervised learning, the
restricted Boltzmann machine [22], can be used to con-
struct a general error-correction protocol for stabilizer
codes. Give a syndrome, defined by a measurement of
the end points of an (unknown) chain of physical qubit
errors, we use our Boltzmann machine to devise a protocol
with the goal of correcting errors without corrupting the

logical bit. Our decoder works for generic degenerate
stabilizer codes that have a probabilistic relation between
the syndrome and errors, which does not have to be a priori
known. Importantly, it is very simple to implement, requiring
no specialization regarding code locality, dimension, or
structure. We test our decoder numerically on a simple
two-dimensional surface code with phase-flip errors.
The 2D toric code.—Most topological codes can be

described in terms of the stabilizer formalism [23]. A
stabilizer code is a particular class of error-correcting code
characterized by a protected subspace C defined by a
stabilizer group S. The simplest example is the 2D toric
code, first introduced by Kitaev [24]. Here, the quantum
information is encoded into the homological degrees of
freedom, with topological invariance given by the first
homology group [25]. The code features N qubits placed
on the links of an L × L square lattice embedded on a
torus. The stabilizer group is S ¼ fẐp; X̂vg, where the
plaquette and vertex stabilizers are defined respectively as
Ẑp ¼ ⊗

l∈p
σ̂zl and X̂v ¼ ⊗

l∈v
σ̂xl with σ̂zl and σ̂xl acting,

respectively, on the links contained in the plaquette p
and the links connected to the vertex v. There are two
encoded logical qubits, manipulated by logical operators

Ẑð1;2Þ
L as σ̂z acting on the noncontractible loops on the real

lattice and logical X̂ð1;2Þ
L as the noncontractible loops on the

dual lattice (Fig. 1).
Given a reference state jψ0i ∈ C, let us consider the

simple phase-flip channel described by a Pauli operator
where σ̂z is applied to each qubit with probability perr. This
operator can be efficiently described by a mapping between
the links and Z2, called an error chain e, whose boundary is
called a syndrome SðeÞ. In a experimental implementation,
only the syndrome (and not the error chain) can be
measured. Error correction (decoding) consists of applying
a recovery operator whose chain r generates the same
syndrome, SðeÞ ¼ SðrÞ. The recovery succeeds only if the
combined operation is described by a cycle (i.e., a chain

PRL 119, 030501 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
21 JULY 2017

0031-9007=17=119(3)=030501(5) 030501-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevLett.119.030501
https://doi.org/10.1103/PhysRevLett.119.030501
https://doi.org/10.1103/PhysRevLett.119.030501
https://doi.org/10.1103/PhysRevLett.119.030501


with no boundaries) e ⊕ r that belongs to the trivial
homology class h0, describing contractible loops on the
torus. On the other hand, if the cycle belongs to a nontrivial
homology class (being noncontractible on the torus), the
recovery operation directly manipulates the encoded logical
information, leading to a logical failure (Fig. 1).
Several decoders have been proposed for the 2D toric

code, based on different strategies [26–30]. Maximum like-
lihood decoding consists of finding a recovery chain r with
the most likely homology class [31,32]. A different recovery
strategy, designed to reduce computational complexity,
consists of generating the recovery chain r compatible with
the syndrome simply by using the minimum number of
errors. Such a procedure, called minimum weight perfect
matching [33] (MWPM), has the advantage that it can be
performed without the knowledge of the error probability
perr. This algorithm is however suboptimal (with lower
threshold probability [25]) since it does not take into account
the high degeneracy of the error chains given a syndrome.
The neural decoder.—Neural networks are commonly

used to extract features from raw data in terms of
probability distributions. In order to exploit this for error
correction, we first build a data set made of error chains and
their syndromes D ¼ fe; Sg, and train a neural network to
model the underlying probability distribution pdataðe; SÞ.
Our goal is to then generate error chains to use for the
recovery. We use a generative model called a Boltzmann
machine, a powerful stochastic neural network widely used
in the pretraining of the layers of deep neural networks
[34,35]. The network architecture features three layers
of stochastic binary neurons, the syndrome layer
S ∈ f0; 1gN=2, the error layer e ∈ f0; 1gN, and one hidden
layer h ∈ f0; 1gnh (Fig. 2). Symmetric edges connect both

the syndrome and the error layer with the hidden layer. We
point out the this network is equivalent to a traditional
bilayer restricted Boltzmann machine, where we have here
divided the visible layer into two separate layers for clarity.
The weights on the edges connecting the network layers are
given by the matrices U and W. Moreover, we also add
external fields b, c, and d coupled to the every neuron in
each layer. The probability distribution that the probabi-
listic model associates with this graph structure is the
Boltzmann distribution [36]

pλðe; S; hÞ ¼
1

Zλ
e−Eλðe;S;hÞ; ð1Þ

where Zλ ¼ Trfh;S;ege−Eλðe;S;hÞ is the partition function,
λ ¼ fU;W; b; c; dg is the set of parameters of the model,
and the energy is

Eλðe; S; hÞ ¼ −
X

ik

UikhiSk −
X

ij

Wijhiej

−
X

j

bjej −
X

i

cihi −
X

k

dkSk: ð2Þ

The joint probability distribution over ðe; SÞ is obtained
after integrating out the hidden variables from the full
distribution,

pλðe; SÞ ¼
X

h

pλðe; S; hÞ ¼
1

Zλ
e−Eλðe;SÞ; ð3Þ

where the effective energy Eλðe; SÞ can be computed exactly.
Moreover, given the structure of the network, the conditional
probabilities pλðejhÞ, pλðSjhÞ, and pλðhje;SÞ are also
known exactly. The training of the machine consists of
tuning the parameters λ until the model probability pλðe; SÞ
becomes close to the target distribution pdataðe; SÞ of the data
set. This translates into solving an optimization problem over
the parameters λ byminimizing the distance between the two
distributions, defined as the Kullbach-Leibler divergence,
KL ∝ −

P
ðe;SÞ∈D logpλðe; SÞ. Details about the Boltzmann

FIG. 1. Several operations on a 2D toric code. Logical operators

Ẑð1Þ
L and Ẑð2Þ

L (orange) are nontrivial cycles on the real lattice. A
physical error chain e (purple) and its syndrome SðeÞ (black
squares). A recovery chain r0 (green), with the combined operator
on the cycle e ⊕ r0 being a product of stabilizers ẐαẐβẐγ (recovery
success). A recovery chain r00 (red) whose cycle has nontrivial

homology and acts on the code state as Ẑð1Þ
L (logical failure).

FIG. 2. The neural decoder architecture. The hidden layer h is
fully connected to the syndrome and error layers S and e with
weights U and W, respectively.

PRL 119, 030501 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
21 JULY 2017

030501-2



machine and its training algorithm are reported in the
Supplemental Material [37].
We now discuss the decoding algorithm, which proceeds

assuming that we successfully learned the distribution
pλðe; SÞ. Given an error chain e0 with syndrome S0 we
wish to use the Boltzmann machine to generate an error
chain compatible with S0 to use for the recovery. To achieve
this goal we separately train networks on different data sets
obtained from different error regimes perr. Assuming we
know the error regime that generated e0, the recovery
procedure consists of sampling a recovery chain from the
distribution pλðejS0Þ given by the network trained at the
same probability perr of e0. Although the Boltzmann
machine does not learn this distribution directly, by
sampling the error and hidden layers while keeping
the syndrome layer fixed to S0, since pλðe; S0Þ ¼
pλðejS0ÞpðS0Þ, we are enforcing sampling from the desired
conditional distribution. An advantage of this procedure
over decoders that employ conventional Monte Carlo
calculations [28,29] on specific stabilizer codes is that
specialized sampling algorithms tied to the stabilizer
structure, or multicanonical methods such as parallel
tempering, are not required. Finally, note that the
assumption of perfect learning is not critical, since the
above sampling routine can be modified with an extra
rejection step as discussed in Ref. [14] to ensure sampling
occurs from the proper physical distribution.
An error correction procedure can be defined as follows

(Algorithm 1): we first initialize the machine into a random
state of the error and hidden layers (see Fig. 2) and to S0 for
the syndrome layer. We then let the machine equilibrate by
repeatedly performing block Gibbs sampling. After some
amount of equilibration steps, we begin checking the
syndrome of the error state e in the machine and, as soon
as SðeÞ ¼ S0, we select it for the recovery operation. If such
a condition is not met before a fixed amount of sampling
steps, the recovery attempt is stopped and considered
failed. This condition makes the precise computational
requirements of the algorithm ill defined, since the cutoff
time can always be increased resulting in better perfor-
mance for a higher computational cost.

Algorithm 1 Neural Decoding Strategy

1: e0: physical error chain
2: S0 ¼ Sðe0Þ ▹Syndrome Extraction
3: Boltzmannmachine¼fe;S¼S0;hg ▹Network Initialization
4: while SðeÞ ≠ S0 do ▹Sampling
5: Sample h ∼ pðhje;S0Þ
6: Sample e ∼ pðejhÞ
7: end while
8: r ¼ e ▹Decoding

Results.—We train neural networks in different error
regimes by building several data sets Dp ¼ fek; SkgMk¼1 at
elementary error probabilities p ¼ f0.5; 0.6;…; 0.15g of

the phase-flip channel. For a given error probability, the
network hyperparameters are individually optimized via a
grid search (for details see the Supplemental Material [37]).
Once training is complete, we perform decoding following
the procedure laid out in Algorithm 1. We generate a test set
T p ¼ fekgMk¼1 and for each error chain ek ∈ T p, after a
suitable equilibration time (usually Neq ∝ 102 sampling
steps), we collect the first error chain e compatible with the
original syndrome, SðeÞ ¼ SðekÞ. We use this error chain
for the recovery, rðkÞ ¼ e. Importantly, error recovery with
rðkÞ chosen from the first compatible chain means that the
cycle ek þ rðkÞ is sampled from a distribution that includes
all homology classes. By computing the Wilson loops on
the cycles we can measure their homology class. This
allows us to gauge the accuracy of the decoder in term of
the logical failure probability, defined as Pfail ¼ nfail=M,
where nfail is the number of cycles with nontrivial homol-
ogy. Because of the fully connected architecture of the
network, and the large complexity of the probability
distribution arising from the high degeneracy of error
chains given a syndrome, we found that the data set size
required to accurately capture the underlying statistics must
be relatively large (jDpj ∝ 105). In Fig. 3 we plot the
logical failure probability Pfail as a function of the elemen-
tary error probability for the neural decoding scheme. We
note that at low perr, our logical failure probabilities follow
the expected [38] scaling form pL=2

err (not plotted).
To compare our numerical results we also perform

error correction using the recovery scheme given by
MWPM [39]. This algorithm creates a graph whose vertices
corresponds to the syndrome and the edges connect each
vertex with a weight equal to the Manhattan distance (the
number of links connecting the vertices in the original
square lattice). MWPM then finds an optimal matching of
all the vertices pairwise using the minimum weight, which
corresponds to the minimum number of edges in the lattice
[40]. Figure 3 displays the comparison between a MWPM

FIG. 3. Logical failure probability as a function of elementary
error probability for MWPM (lines) and the neural decoder
(markers) of size L ¼ 4 (red) and L ¼ 6 (green).

PRL 119, 030501 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
21 JULY 2017

030501-3



decoder (line) and our neural decoder (markers). As is
evident, the neural decoder has an almost identical logical
failure rate for error probabilities below the threshold
(perr ≈ 10.9 [25]), yet a significant higher probability
above. Note that by training the Boltzmann machine on
different data sets we have enforced in the neural decoder a
dependence on the error probability. This is in contrast to
MWPM, which is performed without such knowledge.
Another key difference is that the distributions learned by
the Boltzmann machine contain the entropic contribution
from the high degeneracy of error chains, which is directly
encoded into the data sets. It will be instructive to explore
this further, to determine whether the differences in Fig. 3
come from inefficiencies in the training, the different
decoding model of the neural network, or both. Finite-size
scaling on larger L will allow calculation of the threshold
defined by the neural decoder.
In the above algorithm, which amounts to a simple and

practical implementation of the neural decoder, our choice
to use the first compatible chain for error correction means
that the resulting logical operation is sampled from a
distribution that includes all homology classes. This is
illustrated in Fig. 4, where we plot the histogram of the
homology classes for several different elementary error
probabilities. Accordingly, our neural decoder can easily be
modified to perform maximum likelihood (ML) optimal
decoding. For a given syndrome, instead of obtaining only
one error chain to use in decoding, one could sample many
error chains and build up the histogram of homology
classes with respect to any reference error state. Then,
choosing the recovery chain from the largest histogram bin
will implement, by definition, ML decoding. Although the
computational cost of this procedure will clearly be
expensive using the current fully connected restricted
Boltzmann machine, it would be interesting to explore

specializations of the neural network architecture in the
future to see how its performance may compare to other
ML decoding algorithms [31].
Conclusions.—We have presented a decoder for topo-

logical codes using a simple algorithm implemented with a
restricted Boltzmann machine, a common neural network
used in many machine learning applications. Our neural
decoder is easy to program using standard machine learn-
ing software libraries and training techniques, and relies on
the efficient sampling of error chains distributed over all
homology classes. Numerical results show that our decoder
has a logical failure probability that is close to MWPM, but
not identical, a consequence of our neural network being
trained separately at different elementary error probabil-
ities. This leads to the natural question of the relationship
between the neural decoder and optimal decoding, which
could be explored further by a variation of our algorithm
that implements maximum likelihood decoding.
In its current implementation, the Boltzmann machine

is restricted within a given layer of neurons, but fully
connected between layers. This means that our decoder
does not depend on the specific geometry used to imple-
ment the code, or on the structure of the stabilizer group; it
is trained simply using a raw data input vector, with no
information on locality or dimension. Such a high degree of
generalizability, which is one of the core advantages of this
decoder, also represents a challenge for investigating bigger
systems. For example, a bottleneck in our scheme to decode
larger sizes is finding an error chain compatible with the
syndrome within a reasonable cutoff time.
In order to scale up our system sizes on the 2D toric

code (as required, e.g., to calculate the threshold), one
could relax some of the general fully connected structure of
the network, and specialize it to accommodate the specific
details of the code. Geometric specialization such as this
has been explicitly demonstrated to improve the representa-
tional efficiency of neural networks in the case of the toric
code [8,13]. This specialization should be explored in
detail, before comparison of computational efficiency are
made between our neural decoder, MWPM, and other
decoding schemes. Note that, even with moderate speciali-
zation, the neural decoder as we have presented it above can
immediately be extended to other choices of error models
[41], such as the more realistic case of imperfect syndrome
measurement [42], or transferred to other topological
stabilizer codes, such as color codes [43,44]. We also point
out that the training of the networks is performed off-line
and has to be carried out only once. As such, the high
computational cost of the training need not be considered
when evaluating the decoder computational efficiency for
any of these examples.
Finally, it would be interesting to explore the improve-

ments in performance obtained by implementing standard
tricks in machine learning, such as convolutions, adaptive
optimization algorithms, or the stacking of multiple

FIG. 4. Histogram of the homology classes returned by our
neural decoder for various elementary error probabilities perr. The
green bars represent the trivial homology class h0 corresponding
to contractible loops on the torus. The other three classes

correspond, respectively, to the logical operations Ẑð1Þ
L , Ẑð2Þ

L ,

and Ẑð1Þ
L Ẑð2Þ

L .

PRL 119, 030501 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
21 JULY 2017

030501-4



Boltzmann machines into a network with deep structure.
Given the rapid advancement of machine learning tech-
nology within the world’s information industry, we expect
that such tools will be the obvious choice for the real-world
implementation of decoding schemes on future topologi-
cally fault-tolerant qubit hardware.

The authors thank J. Carrasquilla, D. Gottesman, M.
Hastings, C. Herdmann, B. Kulchytskyy, M. Mariantoni,
and D. Poulin for enlightening discussions. This research
was supported by NSERC, the CRC program, the Ontario
Trillium Foundation, Perimeter Institute for Theoretical
Physics, and the National Science Foundation under Grant
No. NSF PHY-1125915. Simulations were performed on
resources provided by SHARCNET. Research at Perimeter
Institute is supported through Industry Canada and by the
Province of Ontario through the Ministry of Research &
Innovation.

[1] K. Hornik, M. Stinchcombe, and H. White, Neural Netw. 2,
359 (1989).

[2] R. Salakhutdinov, Technical Report UTML, Department of
Computer Science, University. of Toronto, 2008, p. 002.

[3] A. Krizhevsky, I. Sutskever, and G. Hinton, Proceeding
Advances in Neural Information Processing Systems
(NIP2012), Lake Tahoe (2012), Vol. 25, p. 1090.

[4] G. Hinton, Trends Cognit. Sci. 11, 428 (2007).
[5] Y. LeCun, Y. Bengio, and G. Hinton, Nature (London) 521,

436 (2008).
[6] G. Hinton et al., IEEE Signal Process. Mag. 29, 82 (2012).
[7] G. Torlai and R. G. Melko, Phys. Rev. B 94, 165134 (2016).
[8] J. Carrasquilla and R. G. Melko, Nat. Phys. 13, 431 (2017).
[9] L. Wang, Phys. Rev. B 94, 195105 (2016).

[10] G. Carleo and M. Troyer, Science 355, 602 (2017).
[11] P. Broecker, J. Carrasquilla, R. G. Melko, and S. Trebst,

arXiv:1608.07848.
[12] K. Ch’ng, J. Carrasquilla, R. G. Melko, and E. Khatami,

arXiv:1609.02552.
[13] D.-L. Deng, X. Li, and S. D. Sarma, arXiv:1609.09060.
[14] L. Huang and L. Wang, Phys. Rev. B 95, 035105 (2017).
[15] J. Liu, Y. Qi, Z. Y. Meng, and L. Fu, Phys. Rev. B 95,

041101 (2017).
[16] E. M. Stoudenmire and D. J. Schwab, arXiv:1605.05775.
[17] G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. G.

Melko, and G. Carleo, arXiv:1703.05334.
[18] D. Nigg, M. Mueller, E. A. Martinez, P. Schindler, M.

Hennrich, T. Monz, M. A. Martin-Delgado, and R. Blatt,
Science 345, 302 (2014).

[19] H. Bombin, in Quantum Error Correction, edited by
D. A. Lidar and T. A. Brun (Cambridge University Press.
Cambridge, England, 2013), Chap. 19.

[20] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N.
Cleland, Phys. Rev. A 86, 032324 (2012).

[21] H. Bombin and M. A. Martin-Delgado, J. Phys. A 42,
095302 (2009).

[22] G. Hinton, Neural Networks: Tricks of the Trade (Springer,
Berlin Heidelberg, 2012), p. 599.

[23] D. Gottesman, arXiv:quant-ph/9705052.
[24] A. Y. Kitaev, Ann. Phys. (Amsterdam) 303, 2 (2003).
[25] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, J. Math.

Phys. (N.Y.) 43, 4452 (2002).
[26] G. Duclos-Cianci and D. Poulin, Phys. Rev. Lett. 104,

050504 (2010).
[27] G. Duclos-Cianci and D. Poulin, Quant. Inf. Comp. 14,

0721 (2014).
[28] J. R. Wootton and D. Loss, Phys. Rev. Lett. 109, 160503

(2012).
[29] A. Hutter, J. R. Wootton, and D. Loss, Phys. Rev. A 89,

022326 (2014).
[30] A. Fowler, arXiv:1310.0863.
[31] S. Bravyi, M. Suchara, and A. Vargo, Phys. Rev. A 90,

032326 (2014).
[32] B. Heim, K. M. Svore, and M. B. Hastings, arXiv:

1609.06373.
[33] J. Edmonds, Can. J. Math. 17, 449 (1965).
[34] G. Hinton, S. Osindero, and Y. Teh, Neural Comput. 18,

1527 (2006).
[35] R. Salakhutdinov and I. Murray, in ICML-08 Proceedings of

the 25th international conference on Machine learning
(ACM, New York, 2008), p. 872.

[36] A. Fischer and C. Igel, Progress in Pattern Recognition,
Image Analysis, Computer Vision, and Applications
(Springer, Berlin Heidelberg, 2012), p. 14.

[37] Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevLett.119.030501 for details about the
Boltzmann machine and its training.

[38] F. H. E. Watson and S. D. Barrett, New J. Phys. 16, 093045
(2014).

[39] V. Kolmogorov, Math. Prog. Comp. 1, 43 (2002).
[40] A. G. Fowler, A. C. Whiteside, and L. C. L. Hollenberg,

Phys. Rev. Lett. 108, 180501 (2012).
[41] E. Novais and E. R. Mucciolo, Phys. Rev. Lett. 110, 010502

(2013).
[42] C. Wang, J. Harrington, and J. Preskill, Ann. Phys.

(Amsterdam) 303, 31 (2003).
[43] H. G. Katzgraber, H. Bombin, and M. A. Martin-Delgado,

Phys. Rev. Lett. 103, 090501 (2009).
[44] B. J. Brown, N. H. Nickerson, and D. E. Browne, Nat.

Commun. 7, 12302 (2016).

PRL 119, 030501 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
21 JULY 2017

030501-5

https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/j.tics.2007.09.004
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1103/PhysRevB.94.165134
https://doi.org/10.1038/nphys4035
https://doi.org/10.1103/PhysRevB.94.195105
https://doi.org/10.1126/science.aag2302
http://arXiv.org/abs/1608.07848
http://arXiv.org/abs/1609.02552
http://arXiv.org/abs/1609.09060
https://doi.org/10.1103/PhysRevB.95.035105
https://doi.org/10.1103/PhysRevB.95.041101
https://doi.org/10.1103/PhysRevB.95.041101
http://arXiv.org/abs/1605.05775
http://arXiv.org/abs/1703.05334
https://doi.org/10.1126/science.1253742
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1088/1751-8113/42/9/095302
https://doi.org/10.1088/1751-8113/42/9/095302
http://arXiv.org/abs/quant-ph/9705052
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1063/1.1499754
https://doi.org/10.1063/1.1499754
https://doi.org/10.1103/PhysRevLett.104.050504
https://doi.org/10.1103/PhysRevLett.104.050504
https://doi.org/10.1103/PhysRevLett.109.160503
https://doi.org/10.1103/PhysRevLett.109.160503
https://doi.org/10.1103/PhysRevA.89.022326
https://doi.org/10.1103/PhysRevA.89.022326
http://arXiv.org/abs/1310.0863
https://doi.org/10.1103/PhysRevA.90.032326
https://doi.org/10.1103/PhysRevA.90.032326
http://arXiv.org/abs/1609.06373
http://arXiv.org/abs/1609.06373
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.2006.18.7.1527
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.030501
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.030501
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.030501
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.030501
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.030501
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.030501
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.030501
https://doi.org/10.1088/1367-2630/16/9/093045
https://doi.org/10.1088/1367-2630/16/9/093045
https://doi.org/10.1103/PhysRevLett.108.180501
https://doi.org/10.1103/PhysRevLett.110.010502
https://doi.org/10.1103/PhysRevLett.110.010502
https://doi.org/10.1016/S0003-4916(02)00019-2
https://doi.org/10.1016/S0003-4916(02)00019-2
https://doi.org/10.1103/PhysRevLett.103.090501

