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Boolean network models describe genetic, neural, and social dynamics in complex networks, where the
dynamics depend generally on network topology. Fixed points in a genetic regulatory network are typically
considered to correspond to cell types in an organism. We prove that the expected number of fixed points in
a Boolean network, with Boolean functions drawn from probability distributions that are not required to be
uniform or identical, is one, and is independent of network topology if only a feedback arc set satisfies a
stochastic neutrality condition. We also demonstrate that the expected number is increased by the
predominance of positive feedback in a cycle.
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Optimizing network topology is a feasible strategy to
improve the functional characteristics of network systems
[1–4]. Therefore, the relationships between topological
properties and the dynamical characteristics of these
systems have attracted a considerable amount of research
interest, and challenges to obtaining their analytical
descriptions have been addressed. Boolean networks
(BNs) [5–8], which serve as models for complex networks
in biological [9–11], technological [12,13], and sociologi-
cal systems [14,15], even today still have the potential to
provide novel analytical methods to connect dynamics with
static network structures due to their simplicity. While
chaos-order transitions have been investigated in randomly
constructed BNs (RBNs) [16–19], recent studies have
revealed the effects of network topologies on the stability
of their dynamics [20,21]. Once it was proved that the
average number of attractors in an RBN grows faster than
any power law with network size [22], the scaling behav-
iors of the number and size of attractors for BNs with
different topologies and distributions of Boolean functions
were determined [23–26]. In this manner, interest in BNs
with special topologies, including small-world [27] and
scale-free [28–30] networks, has increased.
A fundamental characteristic of a BN is the number of

fixed points (FPs). A plurality of FPs is required for cell
diversity because an FP can be assumed to represent a gene
expression pattern that determines cell identity in cell
differentiation [31–34]. It has been pointed out that the
average number of FPs in an RBN is only one and, thus, real
gene regulatory systems should have special structures [35].
These may be nonrandom network topologies or nonrandom
regulatory functions, and can generate a sufficient number
of FPs.
A case-by-case analysis is indispensable to approaching

this issue because Boolean dynamics depend on both net-
work topology and the assignment of Boolean functions. As
an extreme case, the upper bound of the number of FPs in a

BN under the restriction of a (signed) network topology has
been described in terms of the minimum (positive) feedback
vertex set [36,37]. This directly provides the necessary
condition for a plurality of FPs in (positive) cycle structures
[38,39].
However, the upper bound does not tell us a typical

number of FPs. The expected number of FPs under the
topological restriction should be obtained, because in many
real cases, it is difficult to determine regulation functions
whereas network topology can be observed. Once the
expected number is formulated in terms of network
topologies, it is clarified whether an increase in the number
of cycles in a BN is relevant to increasing the expected
number of FPs along with the upper bound. Moreover, it is
determined whether positive cycles in a signed BN [37]
effectively contribute to increasing the expected number.
As well as network topology, the presence of biases in

Boolean functions will be important for the expected
number. Although the expected number under no bias
has been easily calculated and it is independent of network
topology [40], biases should not be neglected because they
have been observed in real systems [41]. It is known that
biases in favor of either high or low frequency in on-state
outputs (called p bias) [16,17] and high frequency of
canalizing inputs [18,41–43] cause chaos-order transitions
in an RBN. Therefore, their influence on the expected
number should also be clarified.
We consider a BN described as

xiðtþ 1Þ ¼ fi½fxjðtÞ; j ∈ Jig�; ð1Þ
where xi and fi are a Boolean variable and a Boolean
function of the vertex i, respectively. All subscripts in this
Letter are indices of vertices i ¼ 1;…; N, where N denotes
the total number of vertices. The variable xi, which takes
xi ¼ 0 for the off state and xi ¼ 1 for the on state at every
discrete time instant, is updated by fi. In a BN with the
synchronous update scheme, all variables are updated at the
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same time. To simulate more realistic situations, the asyn-
chronous update scheme is also often employed [44,45].
Since FPs do not depend on the choice of update scheme, we
can employ either scheme.A set of input vertices tovertex i is
denoted as Ji. Thus, fi is a function of fxj; j ∈ Jig.
A link from vertex j to i represents one of the following

three conditions: (i) fi takes the input variable xj. (ii) In
addition to condition (i), fi is dependent on xj; i.e.,

fiðxj ¼ 0; fxk; k ∈ Ji − jgÞ ≠ fiðxj ¼ 1; fxk; k ∈ Ji − jgÞ
ð2Þ

holds for at least one state of fxk; k ∈ Ji − jg. (iii) In
addition to conditions (i) and (ii), fi is monotonically
dependent on xj; i.e., only either

fiðxj ¼ 0; fxk; k ∈ Ji − jgÞ ≤ fiðxj ¼ 1; fxk; k ∈ Ji − jgÞ
ð3Þ

or

fiðxj ¼ 0; fxk; k ∈ Ji − jgÞ ≥ fiðxj ¼ 1; fxk; k ∈ Ji − jgÞ
ð4Þ

holds for any state of fxk; k ∈ Ji − jg. Equation (3)
[Eq. (4)] corresponds to a monotonically increasing
[decreasing] function of xj. Simultaneously, link j → i
represents activation (inhibition) interaction, and can be
called a positive (negative) link [37]. Any link condition
can be employed for our theory.
We assume that while network topology (directed links

and vertices) is fixed, fi is drawn from a probability
distribution of Boolean functions denoted by PiðfiÞ
(Fig. 1). The links defined by any one of conditions (i),
(ii), and (iii) restrict possible functions, i.e., PiðfiÞ ¼ 0 if fi
contradicts the link condition. The normalization condition

is described as
P

fiPiðfiÞ ¼ 1, where the summation is
over all possible functions of fi. We see an example shown
in Figs. 2(a) and 2(b): vertex i has three input vertices. If
link condition (iii) is employed, since each of functions I
and J is a nonmonotonic function of x1 and x2, Piðfi ¼
I; JÞ ¼ 0 is assumed. Since network topology designates
only PiðfiÞ ¼ 0, further arrangements, such as Piðfi ¼ AÞ
and Piðfi ¼ BÞ, are needed.
Let us present some typical distributions of PiðfiÞ. In the

case of p bias [16,17], fi is randomly generated and the on
state is allocated as its output value for a certain input state
with probability p. When either link condition (ii) or (iii) is
employed, the contradictory functions are discarded. Thus,
the p-biased Boolean functions tend to output on state
when p > 0.5. To explain the canalizing bias [18,41–43],
we revisit the example in Fig. 2. Function A is called a
canalizing function of x1 because if the input variable x1 is
fixed to either 0 or 1 (x1 ¼ 1 in this case), its output state is
uniquely determined independently of x2 and x3. Hence, x1
is called a canalizing input of function A. In this manner, a
K-variable Boolean function takes 0 toK canalizing inputs.
Under the canalizing bias, percentages of canalizing inputs
are controlled, where some additional rules are required to
set up PiðfiÞ. The canalizing bias has been observed in real
transcriptional systems [41]. More general distributions can
also be considered in our theory.
At an FP, state xiðtÞ prior to update and its output state

xiðtþ 1Þ are equal for any i. Thus, when both a directed
network and a set of Boolean functions ffi; i ¼ 1;…; Ng
are given, the number of FPs is uniquely determined as

nðffigÞ ¼
X
x1¼0;1

� � �
X

xN¼0;1

YN
i¼1

δ½xi; fiðfxj; j ∈ JigÞ�; ð5Þ

FIG. 1. An example set of a Boolean network and probability
distributions of Boolean functions. Boolean function fi, assigned
to vertex i, is drawn from its probability distribution PiðfiÞ.
Under link condition (i), a graph of PiðfiÞ can have 22Ki (the total
number of Boolean functions) bars at most, where Ki is the
number of input links to vertex i. Under link condition (ii) or (iii),
a graph has less than 22

Ki bars. In this example, uniform, biased,
and more complicated distributions are illustrated for P1ðf1Þ,
P2ðf2Þ, and P3ðf3Þ.

(a) (b)

FIG. 2. (a) Schematic of a set of input vertices to vertex i,
denoted by Ji ¼ f1; 2; 3g. Subset Ti ¼ f1; 2g is employed to
classify Boolean functions fi. (b) Truth table of three-variable
Boolean functions. Based on the definition of an N-equivalent
class with respect to Ti ¼ f1; 2g, functions A–D, E–H, and I–J
are organized into classes labeled as miðTiÞ ¼ 1, 2, and 3. The
number of functions in the miðTiÞth class, Qi½miðTiÞ�, depends
on miðTiÞ.
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where δ½a; b� is the Kronecker delta: δ½a; b� ¼ 1 for a ¼ b
and δ½a; b� ¼ 0 for a ≠ b. Note that a and b can depend on
variables fxig throughout our analysis.
When Boolean functions are randomly assigned to every

vertex under the restriction of a network topology, the
expected number of FPs is defined by

hni ¼
X
f1

� � �
X
fN

nðffigÞ
YN
i¼1

PiðfiÞ: ð6Þ

The expected number will depend on both network top-
ology and the probability distributions of the Boolean
functions in general.
By way of preparation for the analysis, we introduce a

classification method of Boolean functions called the
negation- (N-)equivalent class [12]. We denote the negation
of x by x̄, and consider function fðfxj; j ∈ JgÞ. If
another function g is given by gðfxj; j ∈ JgÞ≡
fðfx̄j; j ∈ Ug; fxj0 ; j0 ∈ J − UgÞ, where U is an arbitrary
subset of J, f, and g are N equivalent. An N-equivalent
class is defined as a set of all functions that areN equivalent
to one another. We tighten the definition, and further divide
the class as follows (Fig. 2): T is a given subset of J. If g is
given by gðfxj;j∈ JgÞ≡fðfx̄j;j∈Ug;fxj0 ;j0 ∈T−Ug;
fxk;k∈ J−TgÞ, where U is an arbitrary subset of T, f
and g are N equivalent with respect to T. An N-equivalent
class with respect to T is defined as a set of all functions
that are N equivalent to one another with respect to T. The
integer index mðTÞ is employed to represent the mðTÞth
N-equivalent class with respect to T. We denote the set and
the number of functions in the mðTÞth N-equivalent class
by F½mðTÞ� and

Q½mðTÞ�≡ X
f∈F½mðTÞ�

1; ð7Þ

respectively. When the N-equivalent class for fi is
discussed, we use the notations Ji, Ti, miðTiÞ, Fi½miðTiÞ�,
and Qi½miðTiÞ�. All fi∈Fi½miðTiÞ� satisfy the same link
conditions.
An example of this classification is shown in Fig. 2.

Function A has only activation links while functions B,C,
and D have one or two inhibition links. Thus, in
N-equivalent functions with respect to Ti, only the roles
of the links jð∈ TiÞ → i are different.
We define the concept of stochastic neutrality to

characterize a directed link as follows: link j → i is
stochastically neutral if PiðfiÞ ¼ PiðgiÞ holds for any pair
of fiðxj; fxk; k ∈ Ji − jgÞ and giðxj; fxk; k ∈ Ji − jgÞ≡
fiðx̄j; fxk; k ∈ Ji − jgÞ. Remember that gi is the N-equiv-
alent function of fi with respect to j. Thus, when Ti is a
given subset of Ji and all links from vertices j ∈ Ti to
vertex i are stochastically neutral, PiðfiÞ can be written as

Pi

h
fi ∈ Fi½miðTiÞ�

i
¼ ~Pi½miðTiÞ�; ð8Þ

where ~Pi½miðTiÞ� is a function that only depends on
miðTiÞ instead of fi. This distribution must satisfy the
normalization condition described as

X
miðTiÞ¼1;2;���

X
fi∈Fi½miðTiÞ�

PiðfiÞ

¼
X

miðTiÞ¼1;2;���
~Pi½miðTiÞ�Qi½miðTiÞ� ¼ 1: ð9Þ

When link j → i is stochastically neutral, the probability
that the link is activation interaction is equal to the
probability that it is inhibition interaction; the probabilities
that non-monotonic functions are assigned can be nonzero
under link condition (i) or (ii).
We emphasize that all links are stochastically neutralwhen

the Boolean functions are randomly generated under the p
bias or the canalizing bias because all fi in Fi½miðJiÞ� have
the same number of on-state outputs and the same canalizing
inputs; consequently, Pi½fi ∈ Fi½miðJiÞ�� ¼ ~Pi½miðJiÞ�. In
this sense, stochastic neutrality is commonly realized.
Our theorem below is described in terms of the feedback

arc set (FAS) [46]. An FAS is defined as a subset of links
containing at least one link of every cycle in a directed
network. Therefore, the removal of the FAS renders the
network acyclic (Fig. 3). In general, FAS is not unique, nor
is it required to have a minimum size. For a given network,
the following theorem holds:

Theorem.—If a set of stochastically neutral links is an
FAS, hni ¼ 1.

Proof.—We sort all vertices in the network as follows:
the removal of the stochastically neutral links from the
original network yields an acyclic network. We can apply
an acyclic ordering to the acyclic network because every
acyclic network has such an ordering of its vertices [46]. An
acyclic ordering assigns integer numbers i ð1 ≤ i ≤ NÞ to
every vertex, where j < i holds for every link j → i. We
assign the same set fig to the original network. Now, j < i
holds for every link j → i except for the stochastically
neutral links in the original network.
We denote the set of vertices that are end points of the

stochastically neutral links by Z. For i ∈ Z, Ti⊆Ji is
assumed such that links j ∈ Ti → i are stochastically
neutral and j ∈ Ji − Ti → i are not. For i ∈ Z, using Ti,
the summation can be expressed asX

fi∈Fi½miðTiÞ�
δ½xi; fiðfxj; j ∈ JigÞ�

¼ Ri½miðTiÞ; xi; fxj; j ∈ Ji − Tig�Qi½miðTiÞ�; ð10Þ

FIG. 3. Definition of feedback arc set (FAS). The bold arrows
and circles in the original network correspond to links forming
the FAS and vertices taking these links, respectively. Numbers
1–5 in the acyclic network represent an acyclic ordering.
Therefore, j < i holds for any link j → i.
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where
P

xiRi½miðTiÞ; xi; fxj; j ∈ Ji − Tig� ¼ 1 holds (see
the Supplemental Material [47]). Substituting Eq. (5) into
Eq. (6) and using Eqs. (8) and (10),

hni ¼
�Y

i∈Z

X
miðTiÞ¼1;2;���

��Y
i∉Z

X
fi

�

�Y
i∈Z

~Pi½miðTiÞ�Qi½miðTiÞ�
��Y

i∉Z
PiðfiÞ

�

X
x1¼0;1

� � �
X

xN¼0;1

�Y
i∈Z

Ri½miðTiÞ; xi; fxj; j ∈ Ji − Tig�
�

�Y
i∉Z

δ½xi; fiðfxj; j ∈ JigÞ�
�

¼ 1; ð11Þ

where the summations
P

x1 � � �
P

xN can be carried out in
the inverse acyclic order. □

Equation (11) indicates that a probability for n ≥ n0 is at
most 1=n0, and will be smaller in general (see also Fig. 4).
In other words, a BN does not produce a large plurality of
FPs in most cases. The noteworthy finding is that both
network topology and biases in favor of the on-state outputs
and the canalizing inputs are irrelevant to the plurality of
the FPs, though critical for chaos-order transition. The
theorem further indicates that the necessary condition for
changing hni is violating stochastic neutrality on all links in
at least one cycle.
We now consider a network containing ν vertex-disjoint

cycles, and introduce the symmetric violation of stochastic
neutrality for all links on ν cycles. We assume that links
directly connecting any pair of vertices at the ηth cycle do
not exist, except for the links of the ηth cycle. When link
j → i is on one of the ν cycles, vertex i has

Pi½fi ∈ Fjþ
i ½miðJiÞ�� ¼ ~Pi½miðJiÞ� þ ψ i½miðJiÞ�;

Pi½fi ∈ Fj−
i ½miðJiÞ�� ¼ ~Pi½miðJiÞ� − ψ i½miðJiÞ�;

ð12Þ

where Fjþð−Þ
i ½miðJiÞ� ⊂ Fi½miðJiÞ� is the set of monotoni-

cally increasing (decreasing) functions of xj. If fi is a
nonmonotonic function of xj, Pi½fi� ¼ 0. The weight
parameter ψ i½miðJiÞ� can be tuned in the range
− ~Pi½miðJiÞ�≤ψ i½miðJiÞ�≤þ ~Pi½miðJiÞ�. When ψ i½miðJiÞ�¼
þð−Þ ~Pi½miðJiÞ� for any miðJiÞ, link j → i is always
positive (negative). The other vertices, not on the ν cycles,
have Pi½fi ∈ Fi½miðJiÞ�� ¼ ~Pi½miðJiÞ�.
Under the above assumptions, we obtain the expected

number of FPs when the symmetric violation of stochastic
neutrality is introduced for all ν cycles:

hni¼
Yν
η¼1

�
1þ

YCðlðηÞ;ηÞ

i¼Cð1;ηÞ

X
miðJiÞ

si½miðJiÞ�ψ i½miðJiÞ�Qi½miðJiÞ�
�
;

ð13Þ
whereCðk; ηÞ and lðηÞ represent the kth vertex and the length
of the ηth cycle, respectively. Coefficient si½miðJiÞ� is the
ratio of the number of functions fi ∈ Fjþ

i ½miðJiÞ� satisfying
fiðxj ¼ 0;fxj0 ; j0 ∈ Ji − jgÞ < fiðxj ¼ 1;fxj0 ; j0 ∈ Ji − jgÞ
for state fxj0 ; j0 ∈ Ji − jg to Qi½miðJiÞ�=2. This ratio is
independent of state fxj0 ; j0 ∈ Ji − jg. A detailed derivation
is given in the Supplemental Material [47].
In Eq. (13), the contribution of link j → i is given byP
miðJiÞsiψ iQi, the sign of which can be easily obtained

even if si and Qi are unknown when only either
ψ i½miðJiÞ� > 0 or ψ i½miðJiÞ� < 0 is assumed for all
miðJiÞ. The total contribution of the ηth cycle, the sign
of which corresponds to the predominance of either
positive or negative feedback on the ηth cycle, changes
hni. Although positive and negative feedbacks are known
as the necessary conditions for the existence of multiple
FPs and a limit-cycle oscillation, respectively [37–39], the
sufficiency of changing hni is verified. Equation (13) also
provides the upper and lower bounds of hni, which are
expressed as 0 ≤ hni ≤ 2ν.
Finally, we numerically show the frequency distributions

of n. In Fig. 4, example (a) has a different network topology
from those of (b),(c), and (d). In (b),(c), and (d), different
fPiðfiÞg were assumed. We employed link condition
(ii) and generated fi randomly under p bias (p ¼ 0.6).
In (a) and (b), PiðfiÞ ∝ pMð1 − pÞ2Ki−M if fi had M on-
state outputs. Examples (c) and (d) contained further
assumptions. In (c), Pi for i ¼ 3, 5 were replaced by
P3ðf3 ¼ x1x2x6Þ ¼ P5ðf5 ¼ x2x3Þ ¼ 1. In (d), the above-
mentioned symmetric violation of stochastic neutrality
was introduced into three cycles, where ψ i½miðJiÞ� ¼
� ~Pi½miðJiÞ�were assumed consistent with the signs shown.
We generated 105 realizations of ffig for each network.

(a)

(b)

(c)

(d)

FIG. 4. Numerically obtained frequency distributions of the
number of FPs for each BN (a)–(d). (a),(b) Boolean functions for
all vertices were randomly generated under the p bias (p ¼ 0.6).
(c) The functions f3;5 were assumed to be only AND functions.
(d) The links labeled as þ and − were constrained in positive
and negative interactions, respectively. The average values were
(a)–(c) hni ¼ 1.0 and (d) 5.2.
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The relative frequency distributions of examples (a)–(d)
are shown in Fig. 4. In (b) and (c), relative frequency for
n ¼ 0 was approximately 75%, whereas n ≥ 6 was rarely
observed. Because of the theorem, the average was 1 in
(a)–(c). In (d), hni ¼ 5.2 was obtained, since three positive
and no negative feedbacks were realized.
Controlling only network topology does not contribute

to changing hni even under a p bias and a canalizing bias.
The sufficient condition for increasing hni is the predomi-
nance of positive feedbacks. Real systems exhibiting a
large plurality of FPs would not only have many topologi-
cal cycles, but would also contain elaborate regulatory rules
that collectively compose positive feedbacks.
The expected number of periodic attractors is also impor-

tant, since there is an alternative idea whereby a periodic
attractor can correspond to a cell type in cell differentiation
[48]. A key in our formulation for FPs is the invariance of
variable Ri under xj → x̄j (j ∈ Ti and j ≠ i). In a similar
way, creating a new invariant variable by introducing an
appropriate class of functions can provide a key technique to
analyze the expected number of attractors with a certain
oscillation period in a BN with arbitrary topology.
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