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Random sequential adsorption (RSA) of particles of a particular shape is used in a large variety of
contexts to model particle aggregation and jamming. A key feature of these models is the observed
algebraic time dependence of the asymptotic jamming coverage ∼t−ν as t → ∞. However, the exact value
of the exponent ν is not known apart from the simplest case of the RSA of monodisperse spheres adsorbed
on a line (Renyi’s seminal “car parking problem”), where ν ¼ 1 can be derived analytically. Empirical
simulation studies have conjectured on a case-by-case basis that for general nonspherical particles,
ν ¼ 1=ðdþ ~dÞ, where d denotes the dimension of the domain, and ~d the number of orientational degrees of
freedom of a particle. Here, we solve this long-standing problem analytically for the d ¼ 1

case—the “Paris car parking problem.” We prove, in particular, that the scaling exponent depends on
the particle shape, contrary to the original conjecture and, remarkably, falls into two universality classes:
(i) ν ¼ 1=ð1þ ~d=2Þ for shapes with a smooth contact distance, e.g., ellipsoids, and (ii) ν ¼ 1=ð1þ ~dÞ for
shapes with a singular contact distance, e.g., spherocylinders and polyhedra. The exact solution explains, in
particular, why many empirically observed scalings fall in between these two limits.
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The question of how particle shape affects the dynamical
and structural properties of particle aggregates is one of
the outstanding problems in statistical mechanics with
profound technological implications [1–3]. Jammed sys-
tems are particularly challenging since they are dominated
by the geometry of the particles and are not described
by conventional equilibrium statistical mechanics [4].
Exploring the effect of shape variation thus relies on
extensive computer simulations [5–8] or mean-field theo-
ries whose solutions require similar computational efforts
[9,10]. From a theoretical perspective, it is striking that, so
far, there has been hardly any insight from exactly solvable
analytical models, even though these are most suitable to
identify and classify shapes in the infinite shape space.
In this Letter, we consider the probably simplest non-

trivial packing model that takes into account excluded
volume effects due to shape anisotropies: random sequen-
tial adsorption (RSA). Since Renyi’s seminal work on the
“car parking problem” (the RSA of monodisperse spheres
on a line) [11,12], RSA models have been widely used to
model particle aggregation and jamming in physical,
chemical, and biological systems [13–15]. Their great
appeal is the paradigmatic nature of the adsorption mecha-
nism: the particles’ positions and orientations are selected
with uniform probability and then placed sequentially into
the domain if there is no overlap with any previously placed
particles. Particles are not able to move or reorient once
being placed.
Two key features of RSA models are: (i) the existence of

a finite jamming density ϕ in the infinite time limit
ϕð∞Þ ¼ limt→∞ϕðtÞ and (ii) the algebraic time dependence

of the approach to jamming, which has been conjectured
as [13,16]

ϕð∞Þ − ϕðtÞ ∼ t−ν; ν ¼ 1=ðdþ ~dÞ ð1Þ

for a d-dimensional domain and ~d orientational degrees of
freedom of a particle. In the case of spheres ( ~d ¼ 0), Eq. (1)
has been initially proposed by Feder [17] and theoretically
supported by Pomeau [18] and Swendsen [19], based on
asymptotic estimates. The validity of the conjecture, Eq. (1),
for general nonspherical shapes has been supported from
simulation results on a shape-by-shape basis: ellipses
[20–22], rectangles [16,22–24], spherocylinders [22], and
slightly elongated shapes [25]. Approximate theoretical
arguments for Eq. (1), based on the geometry of target sites
in the later stages of theRSAprocess, have been presented in
[20,22,26]. Logarithmic corrections havebeen suggested for
cubes [27].
Here, we consider the RSA of particles with an arbitrary

shape, whose centers of mass fall on a d ¼ 1 domain [see
Fig. 1(a)]. In this case—referred to as “Paris car parking
problem” [28]—we show below that ν can be derived in a
rigorous way. Remarkably, the exact solution shows that ν
depends not only on ~d but also on the particle shapemanifest
in two distinct shape universality classes. Let pðx; t;α; βÞ
denote the probability to find a segment of length x at time t,
with a particle of orientation α at the left boundary of the x
interval and of orientation β at the right one. The vector α ¼
ðα1;α2;…; α~dÞ contains the angles describing the particle’s
orientation. The master equation for the time evolution of p
in dimensionless form is exactly given by
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∂
∂t pðx; t;α; βÞ ¼ −ψðx;α; βÞpðx; t;α; βÞ

þ
�Z

∞

xþrðβ;γÞ
dypðy; t;α; γÞ

�
γ

þ
�Z

∞

xþrðγ;αÞ
dypðy; t; γ; βÞ

�
γ

: ð2Þ

Here, the brackets denote an expected value with respect
to the isotropic distribution of the angles hhðγÞiγ ¼
C−1 R dγhðγÞ, where C is a normalization constant depend-
ing on ~d. The function ψ is defined as

ψðx;α; βÞ ¼ h(x − rðα; γÞ − rðγ; βÞ)þiγ; ð3Þ

where ðxÞþ ¼ xΘðxÞ, i.e., ðxÞþ ¼ x for x > 0, and ðxÞþ ¼ 0

for x ≤ 0. The central quantity capturing the effect of
anisotropic shapes is rðα; βÞ, denoting the contact distance
of two shapes of orientations α and β [see Fig. 1(b)]. In
Eq. (2), the first term on the rhs denotes the probability per
unit time that an interval x, α, β is destroyed by placing a
particle inside it (ψ is the probability of insertion). Likewise,
the two integrals inEq. (2) describe the creationof an interval
x,α,βbyplacing a particle into a larger interval. Equation (2)
recovers, as special cases, several models discussed pre-
viously in the literature. It trivially recovers the exactly
solvable monodisperse sphere case [11,12,29,30]. The next
simplest model is the RSA of polydisperse spheres [31–36].
Even for this simple extension, ν has not been obtained so far
for general size distributions. The special case of bidisperse
spheres has been treated in [37], showing an algebraic decay
with ν ¼ 1 due to the small spheres. The ~d ¼ 1 version of
Eq. (2) has been studied within an approximate analytical
approach in [38] for the case of rectangles in the limit of
infinitely long aspect ratios, where ν ¼ 1=2 could be
confirmed.

Equation (2) separates into three regimes depending on x

pðx; t;α; βÞ ¼

8>><
>>:

p1ðx; t;α; βÞ; x > g1ðα; βÞ
p2ðx; t;α; βÞ; g2ðα; βÞ ≤ x ≤ g1ðα; βÞ
p3ðx; t;α; βÞ; rðα; βÞ ≤ x < g2ðα; βÞ

:

ð4Þ
In regime 1, x is large enough such that a particle with an
arbitrary orientation can be inserted between the two
boundary particles. Equation (3) then simplifies to

ψðx;α; βÞ ¼ x − hrðα; γÞiγ − hrðγ; βÞiγ: ð5Þ

In regime 2, the interval x is not large enough for particles
of arbitrary orientations. The constraint on orientations is
contained in the full expression Eq. (3). In regime 3, x is so
small that no particle can be inserted, and thus, ψ ¼ 0. The
different expressions of ψ are all captured by Eq. (3) such
that the dynamics in the three regimes is described by
Eq. (2) in a unified way. The three regimes are distin-
guished by the two functions

g1ðα; βÞ ¼ max
γ

½rðα; γÞ þ rðγ; βÞ� ð6Þ

g2ðα; βÞ ¼ min
γ
½rðα; γÞ þ rðγ; βÞ�: ð7Þ

Defining the upper and lower limits of r as a ≤ rðα; βÞ ≤ b,
we see that 2a ≤ g2ðα; βÞ ≤ g1ðα; βÞ ≤ 2b.
The quantity of main interest in the RSA process is

ϕðtÞ ¼
Z
dα

Z
dβ

Z
∞

rðα;βÞ
dxpðx; t;α; βÞ; ð8Þ

which is the number density of particles, i.e., the 1d
equivalent of packing density, which converges to the
jamming limit for t → ∞. In order to solve the master
equation for p1, we make a similar ansatz as in Rényi’s
car parking problem, which is solved by pðx; tÞ ¼
t2FðtÞe−xt, where FðtÞ satisfies the ordinary differential
equation (ODE) _FðtÞ ¼ FðtÞ(a − 2ð1 − e−atÞ=t), assum-
ing spheres of diameter a and the initial condition
Fð0Þ ¼ 1. With Eq. (5), the ansatz for Eq. (2) is

p1ðx; t;α; βÞ ¼ t2Fðt;α; βÞe−xt: ð9Þ

Substituting into Eq. (2) yields

∂
∂t Fðt;α; βÞ ¼ (hrðα; γÞiγ þ hrðγ; βÞiγ)Fðt;α; βÞ

−
2Fðt;α; βÞ

t
þ 1

t
hFðt;α; γÞe−rðβ;γÞtiγ

þ 1

t
hFðt; γ; βÞe−rðγ;αÞtiγ: ð10Þ

(a)

(b)

FIG. 1. (a) Snapshot of a RSA configuration for d ¼ 1 and
~d ¼ 2: a spheroid is selected with a uniform position and
orientation. When no overlap with a previously placed particle
occurs, it is irreversibly adsorbed on the line. (b) Illustration of
the contact distance rðα; βÞ: the distance of the centers of mass
when two particles of orientations α, β first come into contact.
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The key observation is that also the master equation for p2

can be solved analytically for moderate aspect ratios of
the particles. We define the length scale ~gðα; βÞ ¼
minγ½rðα; γÞ þ g2ðγ; βÞ� ¼ minγ½g2ðα; γÞ þ rðγ; βÞ�. The
length ~g is interpreted as follows: for g2 ≤ x ≤ ~g, x is so
small that maximally one particle can be placed inside it.
This means that if ~g ≥ g1 for all α, β, the dynamics in
regime 2 simplifies: the integral terms in Eq. (2) only
integrate over p1. As a result, p2 satisfies a simple first-
order ODE with an inhomogeneity. The solution is

p2ðx; t;α; βÞ ¼ p1ðx; t;α; βÞ þ ½x − hrðα; γÞiγ
− hrðγ; βÞiγ − ψðx;α; βÞ�

×
Z

t

0

ds e−ψðx;α;βÞðt−sÞp1ðx; s;α; βÞ: ð11Þ

Crucially, the condition ~g ≥ g1 is satisfied for 3a ≥ 2b
since then, ~g ≥ 3a ≥ 2b ≥ g1 for all α, β. For regular
convex particles, a, b can be identified with the width
and length of the particles, respectively, so p2 is given by
Eq. (11) for aspect ratios ≤ 3=2. Since we can express p3

analytically with the Eqs. (9) and (11) (the integral terms in
the master equation for p3 only contain p1;2), the only
remaining unknown is the function F of Eq. (10) in p1.
The contact distance is, in general, a highly complicated

function, which already in the case of ellipsoids cannot be
expressed in closed form [39]. Solving Eq. (10) analytically
is thus not feasible in general. However, the exponent ν can
still be determined. We need to calculate

ϕð∞Þ−ϕðtÞ ¼
Z
dα

Z
dβ

Z
∞

rðα;βÞ
dx

Z
∞

t
ds

∂p
∂s ðx; s;α;βÞ:

ð12Þ

Substituting the master equation for the time derivative in
each of the x regimes, we see that we need to evaluate time
integrals of p1;2. The key to express these analytically is
that F scales for large t as [from Eq. (10)]

Fðt;α; βÞ ≈ e
ðhrðα;γÞiγþhrðγ;βÞiγÞðt−tcÞ−2

R
t

tc
ds1s

∼ t−2eðhrðα;γÞiγþhrðγ;βÞiγÞt; ð13Þ

where tc is a lower cutoff of order one that does not
contribute to the asymptotic scaling. With Eq. (13), the
asymptotics of the integrals over p1;2 can also be deter-
mined. From Eqs. (12) and (13), we obtain, with some
manipulations [40],

ϕð∞Þ−ϕðtÞ∼
Z
dα

Z
dβ

Z
g1ðα;βÞ

g2ðα;βÞ
dxe−ψðx;α;βÞt

þ
Z
dα

Z
dβ

Z
∞

g1ðα;βÞ
dxe−(x−hrðα;γÞiγ−hrðγ;βÞiγ)t:

ð14Þ

Since hrðα; γÞiγ þ hrðγ; βÞiγ > g1ðα; βÞ, the second term
decays exponentially for t → ∞. The asymptotic scaling is
thus determined by evaluating the asymptotics of the first
Laplace-type integral. To this end, we need to investigate
the stationary points of ψ . The definitions of ψ and g2 imply
that ψ(g2ðα; βÞ;α; β) ¼ 0. Calculating the gradient of ψ ,
we also obtain ∇ψ(g2ðα; βÞ;α; β) ¼ 0, so the stationary
points lie on the surface x ¼ g2ðα; βÞ on the boundary of
the integration region and correspond to minima since
ψ ≥ 0. The asymptotics of such a high-dimensional
Laplace integral with degenerate stationary points is
typically highly challenging. The analysis in the present case
is possible since the behavior of ψ for x close to the minima
can be determined analytically. Using Eq. (3), we can write

ψðx;α; βÞ ¼ 1

C

Xn
i¼1

Z
Ωi

dγ(x − rðα; γÞ − rðγ; βÞ); ð15Þ

where it is assumed that there are n ~d-dimensional domains
Ωiðx;α; βÞ, where ψ ≥ 0; i.e., Ωi is bounded by hyper-
surfaces satisfying

x ¼ rðα; γÞ þ rðγ; βÞ: ð16Þ
We first assume a unique global minimum γ�ðα; βÞ for all
configurations α, β, corresponding to the γ value defining
g2ðα; βÞ in Eq. (7). As x → g2ðα; βÞ, only the interval i�
containing γ� remains in the sum in Eq. (15). Expanding
around γ� thus yields to leading order

ψðx;α; βÞ ≈ 1

C
(x − g2ðα; βÞ)Ωi�ðx;α; βÞ: ð17Þ

The volume Ωi� is centered at γ� and constrained to become
smaller and smaller for x → g2ðα; βÞ. If we introduce the
vector ϵ ¼ γ − γ� and switch to spherical coordinates
ϵ ¼ zðθÞûðθÞ, where θ parametrizes the solid angle in ~d
dimensions and û is a unit vector, we can calculate Ωi� as
Ωi� ¼

H
dθ

R zðθÞ
0 dzz ~d−1 ¼ H

dθzðθÞ ~d, where zðθÞ denotes
the boundary of the volume Ωi� in the direction of a given
solid angle θ, and dθ includes the surface element in ~d
dimensions. This means that zðθÞ ¼ zðθ; x;α; βÞ and is
determined by the condition Eq. (16). In order to
determine z, we develop Eq. (16) around γ�. This yields
up to quadratic orders x ≈ g2ðα; βÞ þ ϵTMϵ, where
Mðα; βÞ ¼ ∇γ∇γrðα; γ�Þ þ∇γ∇γrðγ�; βÞ. As a conse-
quence, zðθ; x;α; βÞ is given by z ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x − g2ðα; βÞ
p

=
(ûðθÞTMðα; βÞûðθÞ), and the leading order of ψ is with
Eq. (17)

ψðx;α; βÞ ≈
I
dθ

(x − g2ðα; βÞ)1þ ~d=2

C(ûðθÞTMðα; βÞûðθÞ) ~d
: ð18Þ

For large t, Eq. (14) yields after a variable transformation

ϕð∞Þ − ϕðtÞ ∼
Z

1

0

dx e−x
1þ ~d=2t ∼ t−1=ð1þ ~d=2Þ; ð19Þ
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where the upper limit of the x integration is irrelevant
since both g1ðα; βÞ − g2ðα; βÞ and

H
dθ(ûðθÞT×

Mðα; βÞûðθÞ)− ~d=ð1þ ~d=2Þ are finite of order one. Note, how-
ever, that the minimum γ� can be continuously degenerate for
a range of configurations α, β, depending on the shape. For
spheroids and spherocylinders, e.g., when both α, β are
perpendicular to the axis, one can rotate a particle placed in
between at contact without changing the contact distances.
For each degeneracy with respect to a finite rotation, the
effective dimensionality is reduced by one since the volume
Ωi� does not shrink in one of the directions as x → g2ðα; βÞ.
These contributions to the asymptotic scaling are sub-
dominant since they decay as t−1=ð1þð ~d−lÞ=2Þ for l such
degeneracies, and thus, Eq. (19) prevails as t → ∞.
The scaling Eq. (19) holds when r is smooth in every

direction around the minimum γ�. This is true for any
smooth convex shape with nonzero curvature. On the other
hand, if the shape has sections of flat sides, the expansion
up to quadratic order breaks down since the minimum γ�
can be singular. In order to elucidate the situation, we
consider first the ~d ¼ 1 case, where r can be approximated
in closed analytical form for small angles α, β [42,43]

rðα; βÞ ≈ 2aþ a1ðα2 þ β2Þ þ a2jα − βjμ: ð20Þ

Here, a1;2 and μ are shape dependent parameters. For
generic shapes, μ is given by either 1 or 2, depending on
whether the contact point is away from the axis or close to
it, respectively. For ellipses, μ ¼ 2, and r is smooth
throughout. For rectangles, μ ¼ 1, and r is singular when
the minimum is at γ� ¼ α or γ� ¼ β. In arbitrary dimen-
sions, we can infer from Eq. (20) that the singular behavior
around γ� is likewise governed by an absolute value in one
or multiple directions for shapes with flat sides [42]. The
integration region Ωi� can then be separated in a piecewise
way and close to γ� be expanded up to linear order in each
of the regions: x ≈ g2ðα; βÞ þ hðjÞϵ, with hðα; βÞ ¼
∇γrðα; γ�Þ þ∇rγðγ�; βÞ. Since the first order term hðjÞ
of the jth region does not vanish, we have zðjÞ ¼
(x − g2ðα; βÞ)=ðhðjÞ(α; βÞûðθÞ). The leading term of ψ
in this case is

ψðx;α; βÞ ≈
Xm
j¼1

Z
j
dθ

(x − g2ðα; βÞ)1þ ~d

C(hðjÞðα; βÞûðθÞ) ~d
; ð21Þ

assuming m piecewise regions of the integration domain
covering different solid angles. The asymptotic scaling is
then, for arbitrary dimensions,

ϕð∞Þ − ϕðtÞ ∼
Z

1

0

dx e−x
1þ ~dt ∼ t−1=ð1þ ~dÞ: ð22Þ

Importantly, the singular nature of γ� varies depending on
α, β. For rectangles and discorectangles under the approxi-
mation Eq. (20), there are many configurations where
γ� ≠ α, β and the minimum is smooth. In general, the

corresponding regions in α, β need to be separated in the
integral Eq. (14). The overall scaling is then given as a
superposition of terms proportional to t−1=ð1þ ~d=2Þ and
t−1=ð1þ ~dÞ. As t → ∞, the t−1=ð1þ ~dÞ scaling always domi-
nates, but this might be visible only on very long time
scales.
Comparing the theoretical predictions Eqs. (19) and (22)

with simulation data, we see that the scaling t−2=3 for
ellipses ( ~d ¼ 1) is clearly observed (see Fig. 2). The data
for rectangles and discorectangles lie in between the
predicted t−2=3 and t−1=2 scalings, indicating an intermedi-
ate time regime since the minimum can be both singular
and smooth, depending on α, β. In ~d ¼ 2, the solution
predicts the scaling ν ¼ 1=2 for spheroids. This scaling is
not observed on the time scales accessible in the simu-
lations of Fig. 2. The reason is that apart from specific
configurations leading to degenerate minima, there exist
also quasidegeneracies for almost all α, β, reducing the
effective dimensionality by one before the t−1=2 scaling is
attained for very long times [40]. In Fig. 2, the spheroid
data indeed shows an intermediate t−2=3 scaling over a
considerable range. The quasidegeneracies are due to the
short aspect ratio regime and reduced for larger aspect
ratios, where small angular differences can induce more
pronounced variations in the contact distance [40].
The results of Eqs. (19) and (22) are rigorous for

particles with aspect ratio ≤ 3=2. However, the same results
are expected to hold for arbitrary aspect ratios since the
asymptotic scaling in the RSA process will be dominated
by the filling of the smallest x intervals, in which particles
can still be placed. These are intervals g2 ≤ x ≤ ~g such that

FIG. 2. Plot of simulation results for the asymptotic scaling
for a set of shapes with aspect ratio 1.5 [40]. Shown is the
function logðϕð2tÞ − ϕðtÞÞ, which exhibits the same scaling as
logðϕð∞Þ − ϕðtÞÞ when plotted against logðtÞ [23]. For rectan-
gles, discorectangles, and spheroids, the empirical exponent falls
in the range 1=2 ≤ ν ≤ 2=3, indicating an intermediate time
regime as explained by the theory. Data for ~d ¼ 1 ( ~d ¼ 2) shapes
are averaged over 500 (200) samples.
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the corresponding p will always decay as the solution of
Eq. (11) for large t and the same analysis holds.
In summary, the analytical solution of the Paris car

parking problem solves a long-standing problem in our
understanding of RSA processes, highlighting the break-
down of the conjecture Eq. (1) and connecting the scaling
exponent directly with shape features. The analysis of the
function rðα; γÞ þ rðγ; βÞ shows the existence of two shape
universality classes, depending on the presence of singu-
larities at the minimum γ�. The exact geometry of target
sites thus intimately affects the kinetics, which should also
be true in higher dimensions. It would be very interesting to
find out if the same or similar universality classes govern
also other jamming properties for nonspherical shapes, e.g.,
the observed peak in the packing density at specific aspect
ratios of elongated shapes (see, e.g., [9,44–46]), which
allows the identification of optimally dense granular
packings that are highly relevant for developing new
functional granular materials [3]. Since the model
Eq. (2) captures the exact hard-core excluded volume of
shapes and exhibits a density peak as shown in simulations
of ellipses [28], an analytical analysis of the peak in this
model would be feasible if the jamming density ϕð∞Þ could
be calculated. In turn, this requires the explicit solution of
Eq. (10), which will be investigated in the future.
The results highlight the importance of a precise modeling

of the particle shape since even small shape differences can
lead to rather distinct kinetics for large times. Such an insight
is important, e.g., to improve the modeling of nucleosome
adsorption on DNA, which is described by variants of RSA
processes on a 1d line [47–49]. Nucleosomes indeed have
nonspherical shapes and can adsorb in variable orientations
[50,51]. Models that incorporate these degrees of freedom
could thus provide valuable new insight.
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