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A leading candidate for the experimental confirmation of the nonlocal quantum dynamics of Majorana
fermions is the topological Kondo effect, predicted for mesoscopic superconducting islands connected to
metallic leads. We identify an anisotropic, Toulouse-like, limit of the topological Kondo problem where the
full nonequilibrium conductance and shot noise can be calculated exactly. Near the Kondo fixed point, we
find novel asymptotic features including a universal conductance scaling function and fractional charge
quantization observable via the Fano factor. In the universal regime, our results apply for generic anisotropy
and even away from the Kondo limit as long as the system supports an emergent topological Kondo fixed
point. Our approach thus provides key new qualitative insights and exact expressions for quantitative
comparisons to future experimental data.
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Majorana fermions are exotic quasiparticles arising in
topological superconductor structures [1]. In their most
often studied form, they are spatially localized modes
which, when far apart, have zero energy and encode
ordinary fermions in a nonlocal manner. This gives rise
to a topologically degenerate ground state subspace, in
which the nonlocal fermions are proposed as topological
qubits for fault-tolerant quantum computation [2,3].
Of significant current interest, both due to the proposed

Majorana signatures they support [4–11] and a number of
specific computational schemes they are expected to enable
[3], are Majorana devices based on mesoscopic super-
conductor islands where charging effects are significant.
After finding experimental signatures consistent with the
zero-energy nature of Majorana fermions [12], turning to
such mesoscopic devices led to the first results [13]
suggestive of the nonlocality of the Majorana-based fer-
mions in the form of electron teleportation [4], though
possible non-Majorana-based explanations for the obser-
vations were noted to exist [14].
A compelling signature of the Majorana nonlocality and

of topological qubits would be the observation of the so-
called topological Kondo effect [6,7], predicted to arise in
mesoscopic charging-dominated devices with M ≥ 3 leads
connected to M Majorana fermions (an example with
M ¼ 5 is shown in Fig. 1). In this effect, topological
qubits play the role of a nonlocal SOðMÞ “impurity spin”
for the Kondo effect and lead to signatures that include a
conductance enhancement with non-Fermi liquid low-
energy features (e.g., fractionally quantized power laws
and zero-energy conductance). In a minimal, M ¼ 3 lead
device, these features can be turned off by decoupling any
one of the leads, providing an additional, highly qualitative
handle on the effect.
Here we describe an exact approach for calculating the

nonequilibrium conductance and shot noise in topological

Kondo systems, focusing on the universal regime below the
Kondo temperature TK, the sole energy scale characterizing
the low-energy physics. For the conductance, we provide
the combined temperature T and voltage V dependence,
which, even in terms of low-energy asymptotes, was
unavailable so far. In fact, beyond asymptotes, the only
conductance study was the numerical simulation of the
T-dependent linear ac regime in Ref. [10]. Our exact results
give access to the complementary nonlinear dc behavior. For
the shot noise we focus on the zero-temperature dc regime.
In addition to the exact results, our approach will be shown
to provide new physical insights, uncovering the emergence
of a quantized fractional charge e� ¼ ½2ðM − 1Þ=M�e
observable in the Fano factor.
The universality of the regime below TK is meant in the

sense numerically [15] and experimentally [16] demon-
strated for conventional Kondo devices: It is expected to
describe the low-energy physics in a broad range of settings
including, beyond the strict Kondo case Γt ≪ ΔE and

FIG. 1. Sketch of an M ¼ 5 topological Kondo setup: a
mesoscopic superconducting island hosting Majorana fermions
(red dots), coupled to M leads of conduction electrons. We focus
on the conductance G ¼ ∂I=∂V and zero-frequency shot noise P
associated with the current I in one of the leads when it is biased
with voltage V with respect to the rest.
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TK ∼ ΔEe−ΔE=Γt (with Γt the typical Majorana level broad-
ening and ΔE the minimum energy for changing the island
charge by �e), also high-TK devices with Γt ≳ ΔE and, at
least asymptotically, even Γt ≫ ΔE systems near charge
degeneracy as suggested by their topological Kondo low-
energy physics [11].
The key technical innovation behind our results is a

mapping between the topological Kondo problem in a
suitably chosen anisotropic limit and the (massless) boun-
dary sine-Gordon (BSG) model in its form as impurity
backscattering in a repulsive Luttinger liquid. Motivated
by the existence of analogous mappings between
BSG(-equivalent) and more conventional anisotropic
Kondo models [17,18], we call this anisotropic limit the
“Toulouse limit.” The feature that makes our Toulouse limit
well suited for transport calculations is that it maintains a
clear link to theparticle number of an (arbitrarily chosen) lead
M and the overall particle number of the rest of the leads, thus
allowing us to exploit exact BSG results pioneered by
Fendley, Ludwig, and Saleur [19,20]. As in more conven-
tional cases, universality implies that the specific anisotropy
involved in our Toulouse limit is not a limitation as long as
energies sufficiently below TK are probed. In fact, univer-
sality and the emergent isotropy of theKondo problem at low
energies means that the observables calculable from the
Toulouse limit (see Fig. 1) have an extended scope;
e.g., the conductance, upon rescaling, is expected to inform
on the whole low-energy conductance tensor.
We now turn to describing the Toulouse limit and its

transport applications. Our starting point is the topological
Kondo Hamiltonian [6], describing Majorana-assisted hop-
ping between leads of conduction electrons,

H ¼
X
j

H0j þ
XM
j≠k¼1

λjkγjγkψ
†
kð0Þψ jð0Þ: ð1Þ

Here λjk ¼ λkj > 0, and compared to Ref. [6] we omitted a
term inoperative in the universal regime. In Eq. (1), H0j is
the Hamiltonian of conduction electrons ψ j in half-infinite
lead j defined for x < 0, with x ¼ 0 being the tunneling
point to Majorana fermion γj. The reason Eq. (1) is a Kondo
problem is because γjγk realize topological qubit SOðMÞ
“impurity spin” operators, while ψ†

kψ j can be arranged to
form conduction electron SOðMÞ “spin” densities [6]. We
emphasize that, due to the nonlocality of Majorana topo-
logical qubits, these spin objects are highly nonlocal. The
resulting nonlocal transport phenomena [e.g., the SOðMÞ to
SO(M − 1) switch in Kondo features upon decoupling any
one of the leads] are direct signatures of the Majorana
nonlocality.
In what follows, we take H0j to be noninteracting,

describing, e.g., Fermi liquid electrodes coupled to
Majorana fermions via short wire segments (quantum point
contacts) [21]; however, longer, interacting wires can also

be straightforwardly described [7]. For devices satisfying
the Kondo model condition Γt ≪ ΔE, λjk ∼ tjtk=ΔE,
where tj is the lead-Majorana tunnel amplitude (chosen
to be positive without loss of generality), in terms of which
Γt ∼ ν

P
jt
2
j with ν the lead density of states. For devices

with Γt ≳ ΔE, if they display topological Kondo physics at
low energies, Eq. (1) may be used to capture the universal
regime so long as TK itself is used as the reference energy
scale (though here the relation of TK to microscopics is
different).
To formulate the Toulouse limit, it is profitable to note

that Majorana-assisted hopping problems can be effec-
tively cast into bosonic tunneling [7,11,22] via bosoniza-
tion [23]. In terms of this, the leads have free boson
Hamiltonian H0j ¼ ðℏvF=8πÞ

R
dxð∂xθjÞ2 þ ð∂xφjÞ2 with

vF the Fermi velocity, φj encoding the density
ρj ¼ ð∂xφj=2πÞ, and θj being its canonical conjugate,
½∂xφjðxÞ; θj0 ðx0Þ� ¼ 4πiδðx − x0Þδjj0 . At weak coupling
(νλjk ≪ 1), the fields obey boundary conditions
φjð0Þ ¼ ð∂xθjÞð0Þ ¼ 0, and the electron operator at the
tunneling point is ψ jð0Þ ¼ ði= ffiffiffi

a
p ÞΓjeiθj=2 (a is the short

distance cutoff). Here Γj is a Klein factor, also a Majorana
fermion. A key feature of Majorana fermions is that for
different j the products iγjΓj ¼ �1 mutually commute and
thus effectively cancel from the problem, leaving behind
the fully bosonic Hamiltonian [7]

H ¼
X
j

H0j − 2
X
j<k

λjk cos
θkð0Þ − θjð0Þ

2
; ð2Þ

where a has been absorbed into λjk.
The Toulouse limit consists of sending λj;k≠M → ∞ in

Eq. (2). [Note that this is not equivalent to λj;k≠M → ∞
in Eq. (1); indeed, the Kondo fixed point is λjk → ∞ for
Eq. (2), while it is at intermediate coupling in terms of
Eq. (1)] We will now show that in this limit Eq. (2) can be
transformed into backscattering in a repulsive Luttinger
liquid, Eq. (5) below. We start with an orthogonal rotation
inspired by works on quantum Brownian motion [18]:
We decompose ðφ1;…;φM−1Þ and ðθ1;…; θM−1Þ into
θc ¼

P
M−1
j¼1 θj=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M − 1

p
, φc ¼

P
M−1
j¼1 φj=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M − 1

p
associ-

ated with the overall charge in leads 1;…;M − 1; and spin
fields ~θj, ~φj, j ¼ 1…M − 2, which are the components in
directions orthogonal to ð1;…; 1Þ. This is useful, because
the λj;k≠M terms involve only ~θj. The Toulouse limit
amounts to new spin field boundary conditions, pinning
~θj so that the λj;k≠M terms are minimized. With these terms
effectively rendered constant, one gets

H ¼ H0M þHc þ λ cos
θM − θc=

ffiffiffiffi
gt

p
2

þHs: ð3Þ

Here Hc;s are free boson Hamiltonians for the charge and
spin fields, gt ¼ M − 1, λ ¼ P

M−1
j¼1 2λMj, and we absorbed
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a phase in θc. Note that Eq. (3) does not contain
perturbations tunneling ~θj between pinning positions, even
though the new boundary conditions are compatible with
these (see, e.g., Ref. [7]). The formal λj;k≠M → ∞ limit
expresses that these perturbations are set to zero: Their
absence, and thus the decoupling of the M − 1 lead spin
sector, is part of the definition of the Toulouse limit.
Apart from Hs, Eq. (3) is equivalent to tunneling

between two half-infinite wires: the physical Mth lead
and a fictitious lead accounting for the overall density
ρc ¼ ð ffiffiffiffi

gt
p

=2πÞ∂xϕc of the other leads. This fictitious lead,
as indicated by the Luttinger parameter gt > 1, has attrac-
tive interactions. A similar correspondence was alluded to
by Nayak et al. in a seminal work on multilead tunneling
[24]. Here we establish the λj;k≠M → ∞ Toulouse limit as
the concrete framework where this correspondence arises,
which is our first key result.
To make direct contact with the backscattering

model, we make a final sequence of transformations
[21]: We first join up the left- and right-moving modes
of the half-infinite wires to “unfold” [24] them into infinite
wires supporting right-moving modes χM, χc, and ~χj with
½χjðxÞ; χj0 ðx0Þ� ¼ iπsgnðx − x0Þδjj0 . We then perform an
orthogonal rotation [21]:

�
ϕR1

ϕR2

�
¼

0
B@

ffiffiffiffiffiffiffi
M−1

p þ1ffiffiffiffiffi
2M

p
ffiffiffiffiffiffiffi
M−1

p
−1ffiffiffiffiffi

2M
p

−
ffiffiffiffiffiffiffi
M−1

p
−1ffiffiffiffiffi

2M
p

ffiffiffiffiffiffiffi
M−1

p þ1ffiffiffiffiffi
2M

p

1
CA
�
χM

χc

�
; ð4Þ

and finally introduce the right and left movers
ϕRðxÞ ¼ ϕR1ðxÞ and ϕLðxÞ ¼ −ϕR2ð−xÞ, respectively.
After these steps, Eq. (3) becomes H ¼ HLutt þHs, where

HLutt ¼ HL þHR þ λ cos f ffiffiffiffiffi
gb

p ½ϕRð0Þ þ ϕLð0Þ�g; ð5Þ

with Hα ¼ ðℏvF=4πÞ
R
dxð∂xϕαÞ2, gb ¼ M=½2ðM − 1Þ�,

and α ¼ R, L mover densities ρα ¼ ð ffiffiffiffiffi
gb

p
=2πÞ∂xϕα. The

particle numbers Qβ ¼
R
ρβðxÞdx (β ¼ R, L, M, c) are

directly linked via Eq. (4), as will be utilized below.HLutt is
the problem of backscattering in a Luttinger liquid [19,25].
The Luttinger parameter in this picture is gb < 1, corre-
sponding to repulsive interactions. Given the equivalence
of the backscattering and BSG models, Eq. (5) completes
the transformation.
The above mapping between topological Kondo and

BSG models already suggests that the latter may capture
the universal regime of topological Kondo systems. There
is, however, further consideration needed to support this
expectation: So far, what we have is a correspondence for
weak λ. This regime describes only the high-energy
features of Eq. (5); in terms of the standard renormalization
group (RG) argument [25], this is because the backscatter-
ing term has scaling dimension gb < 1 and is thus a relevant
perturbation. If Eq. (5) is to capture the low-energy Kondo
physics, this must be via the RG flow towards strong

coupling. We now make it plausible that this indeed
happens, offering several pieces of evidence.
The first is the boundary entropy Sb, which in our

context is the difference between the ground state
entropy of λjM ≠ 0 and λjM ¼ 0 systems. For BSG models,
this is a known function of gb [26]. It is given by
Sb ¼ ln

ffiffiffiffiffi
gb

p ¼ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=½2ðM − 1Þ�p

, which, remarkably, is
precisely the difference between boundary entropies of M
and M − 1 lead topological Kondo fixed points [27]. This
indicates that the RG flow end points of the BSG model
indeed have the intended topological Kondo interpretation.
Further evidence is given by the conductance near

the strong coupling fixed point, most transparently ana-
lyzed in terms of Eq. (3). At the fixed point, the conduct-
ance between the half-infinite wires of Eq. (3) is
G0 ¼ ð2e2=hÞð1 − 1=MÞ [21,28]. The same value holds
for the topological Kondo fixed point. Furthermore, for the
low-energy correction δG ¼ G0 −G, the leading power
law δG ∼ E2=gb−2 arising when there is only one infrared
energy scale E of interest (e.g., E ¼ eV ≫ T or
E ¼ T ≫ eV) also matches, because the leading strong
coupling scaling dimension 1=gb ¼ 2ðM − 1Þ=M of the
junction [28] is the same as for the topological Kondo fixed
point [6,7,29].
With this preparation, we can now turn to describing how

the exact results for the BSG model can be exploited to
calculate topological Kondo transport properties. This will
provide a framework analogous to that of Schiller and
Hershfield [30], who leveraged the Toulouse limit for
transport in more conventional Kondo systems. The
BSG model is well known to have a crossover energy
scale TK ∼ λ1=ð1−gbÞ separating high and low energies [19];
we identify this with the Kondo temperature. (Note that the
value of TK in the Toulouse limit depends on which lead is
chosen as the Mth; this, however, does not affect the
universal features that emerge upon using TK as the
reference scale.) The tunneling from or to lead M corre-
sponds to backscattering in Eq. (5); therefore, the current I
in this lead will correspond to the backscattering current Ib
in terms of Eq. (5). For the precise correspondence, one has
to relate ΔQ ¼ QM −Qc and ΔQRL ¼ QR −QL. These
quantities set both the currents I ¼ ðe=2Þ∂tΔQ and
Ib ¼ ðe=2Þ∂tΔQRL and how voltage bias enters. Using
Eq. (4), we find ΔQ¼ΔQRL=gbþ½ð2−MÞ= ffiffiffiffiffiffiffiffiffiffiffiffi

2Mgb
p �Qtot,

where Qtot ¼ QR þQL is the conserved total charge of the
backscattering model which cancels from both the current
and the bias. We thus find that

IðV; T; TK;MÞ ¼ 1

gb
Ib

�
V
gb

; T; TK; gb

�
; ð6Þ

where Ib is calculable using exact results [19,31]. The
differential conductance is given by the derivative
G ¼ ∂I=∂V, providing the combined T, V dependence
announced in the introduction. A further exact result on the
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BSG model [20,32], combined with the ΔQ to ΔQRL
mapping, gives the zero-temperature, zero-frequency shot
noise as [33]

P ¼ −
e

1 − gb
ðVG − IÞ: ð7Þ

Equations (6) and (7) are our key exact transport results.
Before moving on to illustrating our exact results, we

pause to highlight two key asymptotic features revealed by
the Toulouse limit. The first of these concerns the con-
ductance, which in the asymptotic T; eV ≪ TK regime is
characterized by a universal scaling function of the ratio
eV=T. Combining our mapping with sine-Gordon results
[32], we find that δG ¼ G0 −G behaves as

δGðT; VÞ
δGðT; 0Þ ¼ d

dx
sinhðπxÞ
πΓ2ðg−1b Þ

����Γ
�
1

gb
þ ix

�����
2

; ð8Þ

where x ¼ eV=ð2πgbTÞ and Γ is the gamma function.
This scaling function approaches unity for x → 0 by
construction, and for x ≫ 1 it is linear with slope
ð2=gb − 1Þ=Γ2ðg−1b Þ when plotted against jxj2=gb−2. The
potential use of Eq. (8) is similar to scaling functions [36]
pivotal in experimental demonstrations of the two-channel
Kondo effect [37] or Luttinger liquid behavior in carbon
nanotubes [38].
The second feature, with a direct noise signature,

is the emergence of a striking fractionally quantized
charge e� in the current corrections δI near the Kondo
fixed point, leading to a fractional Fano factor [34]
F ¼ P=ð2eδIÞ ¼ e�=e due to the events behind δI being
rare and thus uncorrelated. To find e�, we note that, for
Eq. (5), it is well known [35] that, at high energies when
backscattering is weak, the rare backscattering events are in
units of e�h ¼ gbe; and for low energies when backscatter-
ing becomes strong, its weak correction δIb (i.e., weak
tunneling between the two subsystems that emerge due to
strong backscattering) is via rare charge e events. Since the
relation between ∂tΔQ and ∂tΔQRL is linear, the same
high-to-low-energy ratio e�h=e

�
l ¼ gb should arise in the

topological Kondo effect. At high energies, ΔQ changes
due to electron tunneling, e�h ¼ e. Therefore, we find that at
low energies a fractional charge e�¼eg−1b ¼½2ðM−1Þ=M�e
emerges, characterizing the weak backscattering contribu-
tion δI that δIb translates into. The same result is recovered
by calculating the Fano factor from Eq. (7). This charge
quantization, though consistent with asymptotic results on
current-current correlation functions [9], has not so far
received attention. Viewing topological Kondo transport
through the Toulouse limit rendered e� manifest. Note that
the value of e� is characteristic of the topological Kondo
effect and is distinct from the quantized charges noted in
other Kondo-related systems [39].
Finally, we turn to an exact calculation using Eq. (6),

focusing on the conductance in the minimal, M ¼ 3 lead

geometry. In this case, the Luttinger parameter gb ¼ 3
4
,

which allows us to use expressions in Ref. [31] developed
for gb ¼ 1 − 1=n with n > 1 integer. In terms of
t ¼ T=TK and v ¼ eV=TK , the conductance is
Gðt; vÞ ¼ ðe2=hgbÞ½1 − tð∂=∂vÞiðt; v=gbÞ�, where

iðt;vÞ ¼ 3

2

Z
∞

−∞

dθ
cosh2½θþ lnðtÞ�

× ln

�
1þ e3v=2t−εþðθÞ

1þ e−3v=2t−εþðθÞ
1þ e−3v=2t−εþð∞Þ

1þ e3v=2t−εþð∞Þ

�
: ð9Þ

Here εþðθÞ is the energy of kinks in the BSG model, and θ
is the rapidity. The kink energy εþðθÞ follows from the
thermodynamic Bethe ansatz in the form of three coupled
integral equations [31], which we solve numerically. Our
results are shown in Fig. 2. To validate our approach, we
first focus on the V → 0 limit, where we can compare to
numerical renormalization group results for an isotropic
device [10]. We find that, even for such isotropic systems,
the Toulouse limit excellently captures the behavior in the
universal regime with significant deviations appearing only
for T ≳ 0.1TK. Next, we turn to the combined T and V
dependence and, in particular, to studying the emergence of
the universal scaling Eq. (8) and the behavior outside
the scaling regime. As the power law begins to break
down at T; eV ≳ 0.01TK , scaling is expected to hold until
x� ∼ 2 × 10p−3 for conductance data at T ¼ 10−pTK .

FIG. 2. Conductance of an M ¼ 3 device calculated from
the Toulouse limit. Main figure: Linear conductance (solid line)
compared to numerical renormalization group results [10]
for an isotropic device (dots) and to power law asymptotics
(dashed). Inset: The conductance correction fðx; T=TKÞ ¼
δGðx; T=TKÞ=δGð0; T=TKÞ for temperatures T ¼ 10−pTK with
integer p ¼ 2;…; 5 (solid lines) compared to the scaling function
in Eq. (8) (dashed). With increasing p, the scaling function is
followed for an increasing range of x. The arrows indicate
eV ¼ 0.1TK (for p ¼ 2, 3), beyond which the BSG description
breaks down for isotropic systems and is expected to be replaced
by more pronounced departures from scaling.
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This is consistent with our exact results (Fig. 2, inset)
showing the emergence of scaling for jxj ≪ x� and inform-
ing on the subsequent deviations.
In conclusion, we have identified a Toulouse limit of the

topological Kondo problem and described how it can be
exploited to get exact results and novel physical insights on
the universal regime of nonequilibrium transport. In addi-
tion to its utility in informing experiments aimed at probing
the nonlocality of topological qubits in mesoscopic
Majorana devices, our work may open a number of new
directions for theoretical research. These may include
leveraging the Toulouse limit and available BSG results
to obtain a range of novel static and dynamical features
of the topological Kondo effect, or extending our results
to include, e.g., Majorana-Majorana couplings or
“Zeeman terms” in the Kondo language. Using the
exponential control over the latter, one can study
SOðMÞ → SOðM − 2Þ crossovers [8,10,27], where we
anticipate that another effective charge e�Z ¼ 2e=M may
emerge and be observable in the Fano factor.
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