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It is well documented that subjecting perpendicular magnetic films that exhibit the interfacial
Dzyaloshinskii-Moriya interaction to an in-plane magnetic field results in a domain wall (DW) energy
σ, which is highly anisotropic with respect to the orientation of the DW in the film planeΘ. We demonstrate
that this anisotropy has a profound impact on the elastic response of the DWas characterized by the surface
stiffness ~σðΘÞ ¼ σðΘÞ þ σ00ðΘÞ and evaluate its dependence on the length scale of deformation. The
influence of stiffness on DW mobility in the creep regime is assessed, with analytic and numerical
calculations showing trends in ~σ that better represent experimental measurements of domain wall velocity
in magnetic thin films compared to σ alone. Our treatment provides experimental support for theoretical
models of the mobility of anisotropic elastic manifolds and makes progress toward a more complete
understanding of magnetic domain wall creep.
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Topologically protected magnetic features such as
Skyrmions and chiral domain walls (DWs) have emerged
as promising candidates for future spintronic devices due to
the unprecedented efficiency by which they can be manip-
ulated with electric current [1–6]. The recently discovered
interfacial Dzyaloshinskii-Moriya Interaction (DMI) is
critical to the stabilization of these features and greatly
influences the energetic symmetry of a DW necessitating
that existing models for their behavior be refined. Because
DMI energy scales with the cross product of neighboring
spins E ¼ −D · ðS1 × S2Þ, it can only have an effect in
systems with structural inversion asymmetry (SIA) typi-
cally achieved by sandwiching an ultrathin film with
dissimilar materials [7–9]. In perpendicular thin films with
SIA, the interfacial DMI Dint acts on the internal magneti-
zation of a DW with width λ as described by an effective
field μ0HDMI ¼ Dint=ðMsλÞ, stabilizing the Néel configu-
ration with preferred chirality relative to the achiral Bloch
configuration, which would otherwise be the ground state
[10–12]. In the presence of in-plane magnetic fields, such
chiral configurations result in asymmetric growth of
perpendicular magnetic bubble domains and a minimum
in velocity was widely found to occur at a critical in-plane
field suggested to correspond to HDMI [11–14]. These
arguments were based on a proposed inverse correlation
between velocity and DWenergy σ, due to its appearance in
the exponent of the creep law. We note here that the creep
law being used is rooted in the 1D elastic band model where
an energy scale ε describes the potential associated with
bending deformation of the interface. For the case of weak
collective pinning, scaling analysis gives

vcreep ¼ v0eαH
−1=4
z α ∝ ε1=4: ð1Þ

This elastic energy scale is routinely assumed to be given
simply by ε ¼ σ for a magnetic domain wall [15,16], which

is strictly true only for the isotropic case where σ is not a
function of the wall orientation. The combination of an in-
plane field, which alters the wall energy depending on its
internal magnetization, and DMI, which couples this
magnetization with orientation, produces an anisotropic
wall energy. In this case, ε ¼ ~σ, where ~σðΘÞ ¼ σðΘÞ þ
σ00ðΘÞ is the surface stiffness that depends not only on the
energy of the local orientation but also on the energies of
orientations in close proximity to Θ. Surface stiffness has
previously found broad utility in describing the mobility
of solid-liquid interfaces [17] and was first employed
in creep theory to describe the movement of flux lines
through pinning sites in anisotropic superconductors
[18,19]. In this Letter, we analytically calculate the stiffness
of Dzyaloshinskii DWs with anisotropic surface energy,
identifying a driving force to spontaneously form facets
which we interpret using classical interface thermodynam-
ics and confirm numerically. The impact of symmetric
exchange along the domain wall on stiffness is determined
over a range of perturbation length scales, allowing for
comparison to domain growth experiments. We demon-
strate that the creep law predicts the observed asymmetric
trends of field-driven wall velocity vs in-plane field when
the elastic properties are taken into account using an
additional parameter associated with the length scale of
the wall deformation.
Thin films of Ptð2.5Þ=½Coð0.2Þ=Nið0.6Þ�2=Coð0.2Þ=

Tað0.5Þ=TaNð6Þ with units in nm were prepared by dc
magnetron sputtering on oxidized silicon with working
pressure fixed at 2.5 mTorr Ar. Films were determined to
have fcc(111) fiber texture by x-ray diffraction (XRD) with
continuous interfaces confirmed by transmission electron
microscopy (TEM) as shown in prior work [20]. Keff was
determined from the in-plane saturation field, μ0Hk
(¼ 1 T), by alternating gradient field magnetometry
(AGFM) and Ms ¼ 600 kA=m determined from vibrating
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sample magnetometry (VSM). Studies on domain growth
and morphology were performed using a wide-field white
light Kerr microscope with an in-plane electromagnet
producing static fields up to 300 mT and a perpendicular
coil producing 1 ms pulses up to 20 mT. Bubble domains of
20 μm diameter were nucleation at points damaged by a
Gaþ ion beam as described in Ref. [21]. Walls were
positioned in the field of view by nucleation at the edge
of the sample followed by a series of perpendicular
field pulses. Numerical calculations were performed on a
mesh of 1 × 1 × 2 nm cells using the micromagnetic
energy minimization algorithm in MUMAX

3 version 3.8
[22]. All calculations assumed an exchange stiffness,
A ¼ 1 × 10−11 J=m.
In the following analyses, we approximate the

Dzyaloshinskii DW energy as a function of orientation
and internal magnetization as follows:

σðΘ;ϕÞ ¼ σ0 − πDint cosðϕ − ΘÞ − πλμ0HxMs cosðϕÞ

þ lnð2Þ
π

tfμ0M2
scos2ðϕ − ΘÞ; ð2Þ

where, Θ and ϕ represent the azimuthal angles of the
DW normal and internal magnetization m, respectively.
The direction of the applied in-plane field Hx defines the x
axis while the effective field due to DMI is always oriented
along the DW normal. The constants σ0 ¼ 4

ffiffiffiffiffiffiffiffiffiffiffi
AKeff

p
and λ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A=Keff

p
are the Bloch wall energy and width.

The fourth term is the DW anisotropy energy rooted in
the magnetostatic favorability of Bloch walls over Néel
walls [23]. The validity of Eq. (2) is confirmed through
comparison with numerical calculations of the DW con-
figuration to follow.

Minimizing DW energy with respect to internal mag-
netization results in the equilibrium values for a rigid wall
as a function of orientation, σeqðΘÞ and ϕeqðΘÞ, which have
been used in the calculation of DW tilting angles in
nanowires and equilibrium droplet shapes via the Wulff
construction [24,25]. A stiffness value can be calculated
from this energy simply by

~σðΘ; L → ∞Þ ¼ σeqðΘÞ þ ∂2σeq

∂Θ2
ðΘÞ: ð3Þ

As noted above and discussed later in the text, this
expression is valid only for long wavelength distortion and
so provides insight into the long range stability of the
planar domain wall. In Fig. 1(a), σeq and the long wave-
length limit of ~σ vs μoHx are compared for Dzyaloshinskii
DWs with varying HDMI, where positive Hx implies it is
antiparallel to HDMI (henceforth referred to as the anti-
parallel case). While σeq is symmetric about a maximum at
HDMI, ~σ is highly asymmetric about a maximum centered at
Hx ¼ 0. Although σeq and ~σ are qualitatively similar when
the applied field is parallel to HDMI, we note the striking
result that as σ increases for antiparallelHx, ~σ drops rapidly
at a field that is dependent on HDMI. The calculation of ~σ is
complicated by the occurrence of negative values around
HDMI, as they suggest that a nonplanar, faceted wall
configuration is favored. The thermodynamic properties
of faceted configurations have been explored in the study of
crystal growth and are described geometrically by the pedal
ΓðΘÞ of the equilibrium profile as determined via the Wulff
construction on the polar energy plot σðΘÞ [Fig. 1(b)]. The
pedal gives both the driving force for faceting Δσ and the
facet angles ΔΘ as indicated [26,27]. The faceting angle

(a) (b) (d)

(e)
(c)

FIG. 1. (a) σeq and long wavelength ~σ vs μ0Hx for varying μ0HDMI with μ0Hk ¼ 1 T, Ms ¼ 600 kA=m, and tf ¼ 1.8 nm. (b) Wulff
construction (gray), σeqðΘÞ (red), and ΓðΘÞ (blue) for a Dzyaloshinski DWwith μ0Hx ¼ 300 mT and μ0HDMI ¼ 360 mT. The red point
of the inset indicates the origin. (c) Example calculation of wall faceting in MUMAX

3 for the same conditions as (b). (d) Calculated
driving force for faceting Δσ. (e) Calculated facet orientation ΔΘ with superimposed numerical results.
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becomes nonzero, where ~σ is negative, and optimum
orientations calculated from Eq. (2) show good agreement
with numerical energy minimization results [Fig. 1(e)] [22].
Calculating stiffness from ΓðΘÞ, we find that the linear
elastic response vanishes for cases where faceting is
favored.
In real materials, a pinning potential can deform the

domain wall at small length scales, in which case
Heisenberg exchange along the wall will prevent the
internal magnetization from assuming ϕeqðΘÞ everywhere
and invalidate Eq. (3). In order to express the stiffness in
this case, the magnetization profile and energy for an
infinitesimally curved domain wall can be calculated
semianalytically by considering perturbations of the 1D
expression in Eq. (2). We consider a narrow domain wall,
neglecting nonlocal terms in the demagnetizing energy.
Augmenting the 1D energy with an additional term for the
exchange along the DW [28], the combined energy func-
tional is

E ¼
Z

σðΘ;ϕÞ þ 2Aλ

�∂ϕ
∂s

�
2

ds: ð4Þ

We expand the 1D energy to second order about the
orientation Θ0 and equilibrium magnetization ϕ0 for a
straight DW segment

σðΘ;ϕÞ ¼ σ þ ðΘ − Θ0ÞσΘ þ ðϕ − ϕ0ÞðΘ − Θ0ÞσΘϕ
þ 1

2
ðΘ − ΘoÞ2σΘΘ þ 1

2
ðϕ − ϕ0Þ2σϕϕ: ð5Þ

In the right-hand side of the above equation, σ and
its partial derivates, indicated by subscripts, are all evalu-
ated at ðΘ0;ϕ0Þ. A stationary ϕ profile will satisfy the
Euler-Lagrange equation

ðΘ − Θ0ÞσΘϕ þ ðϕ − ϕ0Þσϕϕ − 4Aλ
∂2ϕ

∂s2 ¼ 0: ð6Þ

A segment that is deformed into a circular arc of radius R
has an orientation profile along the wall given by

ΘðsÞ ¼ Θ0 −
s
R
; ð7Þ

which can be used to solve Eq. (6) for the magnetization
profile, giving

ϕðsÞ ¼ ϕ0 þ
s
R

σΘϕ
σϕϕ

þ C1 sinh

�
s
Λ

�
þ C2 cosh

�
s
Λ

�

Λ ¼ λ
ffiffiffiffiffiffiffi
σ0
σϕϕ

r
: ð8Þ

Here Λ is the length scale for exchange along the domain
wall, the vertical Bloch line width. For a domain wall
segment with fixed end points a length L apart, the bounds
of integration for large R are

sep ¼ �R arcsin

�
L
2R

�
≈�L

2

�
1þ 1

6

�
L
2R

�
2
�
: ð9Þ

Combining the expressions for σ, Θ, ϕ, and sep, we
evaluate E of the curved segment and will focus on the case
where we do not fix the magnetization of the end points.
Minimizing energy with respect to C1 and C2 we have

C1 ¼
σΘϕ
σϕϕ

Λ
2R

sech
L
2Λ

; C2 ¼ 0: ð10Þ

The ground state energy of a curved domain wall can
now be directly determined, from which we can extract the
elastic response through the relation

EðRÞ ≈ L

�
σ þ 1

6

�
L
2R

�
2

~σ

�
: ð11Þ

The result is a dispersive stiffness given by

~σðΘ; LÞ ¼ σ þ σΘΘ −
σ2Θϕ
σϕϕ

ζ

�
L
2Λ

�
;

ζðlÞ ¼ 1 −
3

l3
½l − tanhðlÞ�: ð12Þ

As L → ∞, ζ → 1, and we recover an expression for ~σ
that is independent of symmetric exchange along the DW.
This expression is the generalized stiffness for a surface
with an orientational order parameter in local equilibrium
that was first identified by Fournier to describe soft
materials [30]. Conversely, as L → 0, ζ → 0, and the
stiffness corresponds to the domain wall bending while
maintaining a constant internal magnetization direction.
The third term in the expression for stiffness therefore
corresponds to the energy decrease due to the DWmoments
relaxing to the ground state of the curved wall.
Stiffness as a function of μ0Hx is plotted in Fig. 2 for

different L and Dint with μ0Hk ¼ 1 T and Θ0 fixed at 8° to
account for roughness as justified later. Two-dimensional
numerical calculations have been superimposed and show
good agreement with the analytic solution as described in
the Supplemental Material [28]. To better compare the
trends in ~σ with experiment, we have calculated a DW
velocity v and its antisymmetric component Acreep, as
defined in Ref. [7] with the exponential factor scaling
by ð ~σ= ~σHx¼0Þ1=4. We see from either ~σ or velocity that at
low length scales the effect of DMI is to both shift the curve
horizontally, as described by Je et al. [12] for σ, and induce
an asymmetric vertical shift that is superficially similar to
the chiral damping proposed by Jué et al. [7]. Unlike chiral
damping, these two effects offset each other at high fields
so the stiffness converges for ↑↓ and ↓↑ walls. As L
increases, sharp drops in stiffness develop at fields where
the wall transitions from fully Néel to having some Bloch
component. The most striking consequence is that the
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anti-parallel case can have multiple local extrema as well as
a significant window where it is expected to have a greater
velocity than its parallel counterpart before the two cases
converge at much larger fields.
We now turn our attention to experimental studies on

films with SIA supporting the argument for stiffness as the
governing factor in Dzyaloshinskii DW mobility based on
the previous calculations. In recent work, the antiparallel
case was found to grow with greater velocity than its
parallel counterpart for large Hx [21,31], which is contra-
dictory to any explanation based on a velocity trend that is
inversely related to σ. In the case of Co=Ni, this was
attributed to an energetic driving force to form the
equilibrium shape [21]. However, we have found that
the velocity trends are largely independent of the bubble
size in this system and hold even for planar DWs,
suggesting that the mechanism is more fundamental to
the domain wall mobility. In Fig. 3, we observe a distinct
asymmetry in the Co=Ni system characterized by a rapid
increase in velocity for large positive Hx and a more
gradual monotonic increase for negative Hx noting that
there is little difference between the trends for bubble
domains or planar DWs. A series of Kerr images are
included to highlight the evolution of the wall morphology

with increasingHx. Although there are likely to be changes
to the morphology on a length scale not resolvable by Kerr
microscopy, it does appear that the wall profile becomes
more irregular for increasing Hx, which could be due to a
reduction of stiffness.
The experimental data are best fit using the stiffness

model with μ0HDMI¼106mT, L¼47 nm, μ0Hk¼1.5T,
and Θ0 ¼ 8°. Among these fitting parameters, each has a
markedly different effect on the shape of the curve, making
it infeasible to maintain a fit to the experimental data by
simultaneously varying multiple values. On this front, our
model not only allows us to determine the magnitude of
Dint, but also provides an estimate of the pinning length
scale, something that is notoriously difficult to extract
experimentally. The nonzero value of Θ0 accounts for
inherent roughness of the DW and is consistent with the
wall profile as seen in Fig. 3(a). Although the fit suggests
an anisotropy field larger than we observe experimentally,
this could be explained by a field dependence of the
pinning potential or domain wall width, which can both
affect the creep law energy scale in addition to the elastic
properties [19].
We also note that the value of HDMI predicted here is

larger than the field at which the minimum in velocity is
observed. Although a relatively small deviation here, it
could be significant in systems where L is large leading to a
local maximum in velocity with an initial minimum shifted
closer to the origin as in, for example, Fig. 2(d) with
L ¼ 96 nm. Indeed, a recent study on Hf=FeCoB=MgO
thin films identified a local maximum in velocity for small
Hx, which matches this trend and is not predicted from
other theoretical treatments [32]. In low coercivity films
such as FeCoB=MgO, it is reasonable to expect the pinning
sites to be more sparse leading to larger values of L.

(a) (b)

(c) (d)

(e) (f)

FIG. 2. (a)–(b) Normalized ~σ vs μ0Hx for (a) D ¼ 0.25 mJ=m2

and (b) D ¼ 0.5 mJ=m2 from analytic and 2D numerical calcu-
lations. Dashed lines indicate DW energy. (c)–(d) Corresponding
↑↓ and ↓↑DW velocity behavior calculated from (a),(b).
(e)–(f) Antisymmetric component of the velocity, Acreep ¼
lnðv↑↓=v↓↑Þ calculated from (c),(d).

(a)

(b) (c)

FIG. 3. (a) Subtractive Kerr images of Co=Ni where bounds of
the light gray region represent the displacement of an ↑↓DW.
(b) Experimental velocity vs μ0Hx for μ0Hz ¼ 4.25 mT with fit
from the dispersive stiffness model. The fitting parameters use v0
and α taken from experimental results atHx ¼ 0. (c) DW velocity
vs ðμ0HzÞ−1=4 for a series of μ0Hx. Dashed lines correspond to
creep parameters used in our stiffness model where v0 is fixed.
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In summary, we have demonstrated that the property
governing Dzyaloshinskii DW mobility is ~σ as predicted
by the elastic band model of creep [15,16,18,19] rather than
the DW energy σ, as often assumed. Replacing σ with ~σ
in the exponent of the creep law is inconsequential to the
study of DW dynamics absent a symmetry breaking in-
plane magnetic field, but critical when the effects of such a
field are combined with interfacial DMI. This model
explains multiple features of the velocity curves including
a reversal in growth symmetry and a local maximum in
velocity that are not predicted from past treatments. By
fitting experimental data, it is possible to not only extract
Dint, but also the length scale of the DW deformation.
We note that while the elastic energy has typically been
applied within the exponential of the creep law, it is
possible that the stiffness would affect the frequency of
thermal vibrations of the DW, which in turn could impact
the attempt frequency and therefore the preexponential
factor. Although our analysis is distinctly different from
previous descriptions of Dzyaloshinskii DW creep, the
modification is not to the creep law itself, but to built-in
assumptions about wall elasticity. This treatment actually
reaffirms the broad validity of describing magnetic domain
walls as 1D elastic bands in thin films.
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