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Information scrambling and the butterfly effect in chaotic quantum systems can be diagnosed by out-of-
time-ordered (OTO) commutators through an exponential growth and large late time value. We show that
the latter feature shows up in a strongly correlated many-body system, a Luttinger liquid, whose density
fluctuations we study at long and short wavelengths, both in equilibrium and after a quantum quench. We
find rich behavior combining robustly universal and nonuniversal features. The OTO commutators display
temperature- and initial-state-independent behavior and grow as t2 for short times. For the short-
wavelength density operator, they reach a sizable value after the light cone only in an interacting Luttinger
liquid, where the bare excitations break up into collective modes. This challenges the common
interpretation of the OTO commutator in chaotic systems. We benchmark our findings numerically on
an interacting spinless fermion model in 1D and find persistence of central features even in the
nonintegrable case. As a nonuniversal feature, the short-time growth exhibits a distance-dependent power.
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Introduction.—Spectacular experimental progress in the
study of coherent quantum dynamics has focused much
attention on the question how many-body systems evolve in
real time [1,2]. Particularly interesting is the study of ergodic
versus nonergodic behavior. This builds on previous work
under theheadingofclassical andquantumchaos,where ideas
suchas theLyapunovexponents (and theconcomitant “butter-
fly effect”) have turned out to be useful, together with level
statistics of the Hamiltonian. This has been supplemented by
questions about how information—in the formof correlations
or entanglement—spreads [3–6]. Here, the concept of scram-
bling encodes the loss of information under time evolution,
in particular, asking the question to what extent different
initial states can be distinguished at later times [7,8].
Recently, out-of-time-ordered (OTO) correlation func-

tions [9] have been identified as quantities providing
insights into quantum chaos and information scrambling.
The OTO commutator is defined as

CðtÞ ¼ h½V;WðtÞ�½WþðtÞ; Vþ�i ≥ 0; ð1Þ
whereV andW are usually local operators, possibly separated
by some spatial distance and WðtÞ¼expðiHtÞW ×
expð−iHtÞ. It contains terms of the form −hVWðtÞ×
VþWþðtÞi, coined the OTO correlator due to its unusual
temporal structure. It probes the spread of information, in
particular, signaling the presence of quantum chaos, with a
growth bounded by a thermal Lyapunov exponent [10].Much
effort, including experiments [11–18], has been devoted to its
study, with intriguing connections to black hole physics and
the random matrix theory [10,19] appearing, while it has
turned out that a simple “mesoscopic,” Sachdev-Ye-Kitaev
model [9,20–23] captures many interesting phenomena.

The quantum butterfly effect (sensitivity to small per-
turbations) occurs in chaotic systems. It is diagnosed by the
OTO commutator via an exponential growth before becom-
ing of the order of 2hVVþihWWþi at late times [7,8,10].
While this in itself is an interesting phenomenon, it is
equally important to determine what universal features
characterize OTO commutators in well-studied yet non-
trivial models of condensed matter, even though these are
expected not to saturate any scrambling bounds as they
reside on finite-dimensional lattices.
In order to advance this program, we consider Luttinger

liquids (LLs), realized in a variety of settings [24,25]. LLs
describe the low-energy physics of both integrable (i.e.,
nonergodic) and nonintegrable (ergodic) critical [26] 1D
systems, predicting universal behavior for the long-time
dynamics, irrespective of the (non)integrability of the
system [27]. LLs thus represent an ideal setting to gain
universal information about the quantum butterfly effect
and to disentangle chaotic from regular behavior.
Moreover, in the presence of interactions, the original
noninteracting quasiparticle description breaks down as
excitations fractionalize into collective bosonic modes.
This, in particular, turns a Fermi gas into a non-Fermi
liquid. How these effects combine in the OTO commutator
in LLs is the main subject of our work.
Here, we focus on Eq. (1) in LLs [31] and find that, in the

OTO density commutator, an initial rise ∝ t2 builds up to a
strong signal upon the arrival of the light cone, beyond
which it saturates. This saturation is reminiscent of the
quantum butterfly effect in chaotic models. However, we
suspect that it occurs here due to the replacement of the
original excitations by new bosonic collective excitations.
Indeed, in the noninteracting case, both features are absent
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together. The saturation is due to short-wavelength degrees
of freedom, while the long-wavelength contribution—which
exhibits a large degree of universality—vanishes at large
times. Our findings are insensitive to the choice of initial
thermal or ground states, as well as whether we time-evolve
an eigenstate or follow a quantum quench protocol [1,2].
These central features are reproduced by exact diagonaliza-
tion studies of theXXZmodel. Remarkably, the short-time t2

behavior gives way to a t2x rise for spatially separated local
densities (with separation x), reflecting the prominent role of
microscopic details in the model under study.
Luttinger model.—The low-energy description of LLs

is in terms of bosonic soundlike collective excitations with
Hamiltonian [24,33]

H ¼
X
q≠0

vjqjbþq bq þ
gðqÞ
2

½bqb−q þ bþq bþ−q�; ð2Þ

where bq is the annihilation operator of a bosonic density
wave, gðqÞ ¼ g2jqj, with g2 the interaction strength, and v
the sound velocity of the noninteracting system. The
interaction is also characterized by the dimensionless
Luttinger parameter K¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðv−g2Þ=ðvþg2Þ

p
. Equation (2)

is diagonalized by a Bogoliubov rotation, and the
dispersion relation is ωq ¼ vfjqj with the renormalized

final velocity vf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − g22

p
in the interacting system. The

transformation gives bq ¼ coshðθÞBq þ sinhðθÞBþ
−q with

Bq the new boson operators, coshðθÞ ¼ ðK þ 1Þ=2 ffiffiffiffi
K

p
, and

sinhðθÞ ¼ ðK − 1Þ=2 ffiffiffiffi
K

p
, which are q independent for the

present case.
The time dependence of the original boson field is

bqðtÞ ¼ uqðtÞbq þ vqðtÞ�bþ−q ð3Þ

with uqðtÞ ¼ cosðωqtÞ − i sinðωqtÞ coshð2θÞ and vqðtÞ ¼
−i sinðωqtÞ sinhð2θÞ. Any expectation value is taken using
a Bogoliubov rotation into the Bq basis. One can consider
both a quantum quench and equilibrium time evolution. In
the former case, the LL parameter K in the time evolution,
Eq. (3) differs from those in the Bq operators. For the sake
of simplicity, we assume quenching from a noninteracting,
K ¼ 1 state; therefore, the Bq operators are identical to the
bq’s. In the equilibrium case, the same LL parameter is used
for both time evolution and Bogoliubov rotation.
We focus on the long-wavelength (q ∼ 0) density fluc-

tuations and a vertex operator [33]. Their bosonized
versions are

n0ðxÞ ¼ −
1

π

∂ϕðxÞ
∂x ; VnðxÞ ¼ exp½inϕðxÞ�; ð4Þ

respectively, where n is an integer and V�2=2πα corre-
sponds to the �2kF Fourier component of the short-
wavelength density operator with kF the Fermi wave
number and α the short distance cutoff [24]. This operator
is responsible for, e.g., the density wave phase transitions

[24,34,35] and Friedel oscillations. A similar expression
describes the phase fluctuations in a 1D quasicondensate
[24,25]. The bosonic field in Eqs. (4) is expressed in terms
of the canonical Bose operators as

ϕðxÞ ¼
X
q≠0

ffiffiffiffiffiffiffiffiffiffiffi
π

2jqjL
r

½expðiqxÞbq þ H:c:�: ð5Þ

Long-wavelength density.—The OTO commutator of
the long-wavelength field builds on the density response
function χðtÞ ¼ h½n0ðx; tÞ; n0ð0; 0Þ�i, where the bare com-
mutator ½n0ðx; tÞ; n0ð0; 0Þ� is already a c number [24,36]
due to the linear dispersion in Eq. (2); therefore, χðtÞ¼
iK
π2
½fαðvftþxÞ=½α2þðvftþxÞ2�2gþðx→−xÞ�. The OTO

commutator then yields

C0ðtÞ ¼ hj½n0ðx; tÞ; n0ð0; 0Þ�j2i ¼ jχðtÞj2: ð6Þ

It has several interesting consequences: (a) From Eq. (6)
and the fact that χðtÞ does not contain the OTO correlator,
this OTO commutator is not influenced by the OTO
correlator either. (b) Since the bare commutator is already
a temperature-independent c number, the expectation value
in C0ðtÞ becomes independent of both the temperature [10]
and the wave functions—it depends only on the time
evolution operator and is completely independent of the
initial state. Therefore, there is no distinction between a
quantum quench and equilibrium evolution. (c) Putting all
this together, C0ðtÞ grows in a t2 manner initially, exhibits
double peaks at around the light cone, and decays as
1=t6 for long times. The t2 is the lowest possible power
at short times of the OTO commutator, with prefactor
hj½½H;W�; V�j2i, unless this expectation value vanishes. As
we show later for the short-wavelength density fluctua-
tions, this can also occur.
Note that the Fourier transform of χðtÞ gives the

dynamical structure factor Sðω; qÞ ∼ Kjqjδðω − vfjqjÞ in
a LL, indicating that bosonic excitations have an infinite
lifetime due to the linearized dispersion [36]. In a nonlinear
LL picture with finite curvature from the noninteracting
band structure [37], the correlation function changes and
develops additional tails. How curvature and other higher-
energy features are manifested in the OTO commutator is
an intriguing open question but is beyond the scope of the
present work [38].
Short-wavelength density.—The OTO commutator of

the general vertex operator is more involved. The simple
commutator is rewritten [24,33] as

½Vnðx1Þ; V−mðx2Þ� ¼ 2eiðnϕ1−mϕ2Þ sinh
�
nm
2

½ϕ1;ϕ2�
�

ð7Þ

with ϕ1;2 ¼ ϕðx1;2Þ and the commutator in Eq. (7) yields a
vertexlike operator, in contrast to the long-wavelength case.
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The commutator of the ϕ fields is a temperature-
independent c number and is evaluated as

½ϕðx;tÞ;ϕð0;0Þ� ¼−i
K
2
arctan

�
vftþx

α

�
þðx→−xÞ: ð8Þ

Now, we calculate the OTO commutator from Eq. (7).
The two exponential fields are Hermitian conjugates of
each other, exp½iðnϕ1 −mϕ2Þ� exp½iðmϕ2 − nϕ1Þ�, and
need to be contracted. In the properly regularized theory,
the exponential fields are point split [33] and the exponents
then merged. After taking the expectation value, we get 1,
independent of the temperature. Putting all this together,
only the commutator in Eq. (8) remains and

CdwðtÞ ¼ hj½V2ðx; tÞ; V−2ð0; 0Þ�j2i

¼ 4sin2
�
K arctan

�
vftþ x

α

�
þ ðx → −xÞ

�

!t→∞
4sin2ðKπÞ: ð9Þ

This expression growswith t2 for vft ≪ jxj and rises sharply
to 4 sin2ðKπÞ on hitting the light cone. Its long-time value
vanishes in the noninteracting limit [41] but can give a sizable
contribution to the commutator for a range of K values.
Surprisingly, CdwðtÞ ≤ 4 follows from the Cauchy-Schwarz
inequality (∥ab∥ ≤ ∥a∥∥b∥) and ∥VnðxÞ∥ ¼ 1, and its
maximal value from Eq. (9) is reached at late times for,
e.g., K ¼ 1=2. Note that, even in a suitably chaotic system,
the late time value is expected to be 2 [10]. This is in sharp
contrast to the expectation value of the simple commutator
in Eq. (7), which, for n ¼ m ¼ 2, gives the retarded short-
wavelength charge susceptibility in a LL and vanishes in a
power law fashion in the long-time limit [24]. Equation (9) is
thus strongly influenced by the OTO propagator, as it differs
from the square of the short-wavelength charge susceptibil-
ity. In getting theCdwðtÞOTO commutator, Eq. (7) itself is a
vertex-operator-like quantity and becomes independent of
both the temperature and initial state after taking its expect-
ation value. Even though the Luttinger model is not chaotic,
this commutator still exhibits some characteristics of the
butterfly effect in the sense that the late time limit of theOTO
commutator reaches a sizable value, indicating the effect of
the OTO propagator.
Finally, the simple square of Eq. (7) includes phase

information into the OTO commutator, which “degrades”
the signal at long times, in particular, replacing the above
saturation with a decaying form sensitive to the temperature
(power law versus exponential) as well as evolution
protocol [32].
OTO density commutator for interacting fermions.—In

order to test our results on the OTO commutator, we have
studied one-dimensional spinless fermions in a tight-
binding chain with nearest-neighbor repulsion at half filling
and a periodic boundary condition using numerical exact

diagonalization (ED) of a finite-size system. This problem
is equivalent to the 1D Heisenberg XXZ chain after a
Jordan-Wigner transformation [24,35]. The Hamiltonian is

H ¼
XN
m¼1

J
2
ðcþmþ1cm þ H:c:Þ þ Jznmþ1nm; ð10Þ

where c’s are fermionic operators, cNþ1 ¼ c1, andJz denotes
the nearest-neighbor repulsion. This model realizes a LL for
Jz < J with LL parameter K ¼ π=2½π − arccosðJz=JÞ�. We
have evaluated the OTO commutator of the local charge
density, n1 ¼ cþ1 c1, and its time-evolved counterpart to be
able to access directly the late time behavior after the light
cone. System sizes up toN ¼ 22 are considered, the number
of electrons being N=2.
According to Ref. [10], this should approach 2hn1i2 ¼

2ð1
2
Þ2 ¼ 1

2
at late times when the butterfly effect occurs. In

suitably chosen chaotic systems, this occurs through the
exponential growth of the OTO correlator of local operators
under time evolution as is the case in the Sachdev-Ye-Kitaev
model [9,20–23]. In the bosonized form, the local charge
density [24] isnð0Þ ¼ −∂xϕð0Þ=π þ n2kF cos½2ϕð0Þ�, where
n2kF depends on the short-range properties of Eq. (10)
available only from its exact solution [42]. The OTO
commutator contains both short- and long-wavelength oper-
ators, but its long-time limit will be dominated by Eq. (9);
i.e., it should approach a nonzero, constant value.
The numerical evaluation of its OTO commutator is

shown in Fig. 1, together with the predicted behavior. We
investigate both equilibrium time evolution from an inter-
acting ground state as well as quantum quenches from a
noninteracting, Jz ¼ 0 ground state to an interacting
system. We find very satisfactory agreement between
bosonization and ED. In particular, (a) both equilibrium
and sudden quench OTO commutators stay very close to
each other, (b) the commutator reaches a time-independent
value after a transient time, and (c) the short-time behavior
is t2. The agreement on the steady state for the OTO
commutator with Eq. (9) is surprisingly good, given it
contains the unknown prefactor n2kF, which can in principle
also depend [42] on Jz. The OTO commutator is indeed of
the same order as expected for the quantum butterfly effect
and reaches its maximal value at Jz ¼ J (⇔ K ¼ 1=2)
from Eq. (9), even though the model in Eq. (10) is not
chaotic but integrable. Any finite Jz in Eq. (10) destroys the
Fermi gas and induces non-Fermi liquid (LL) behavior, and
the bare fermionic excitations do not persist but give way to
collective bosonic modes. The density operator in the OTO
commutator naturally decomposes into collective modes
during the time evolution, which could explain the large
late time value. As evident from Fig. 1, absent fraction-
alization (Jz ¼ 0) implies Cnðt → ∞Þ → 0.
We have also investigated the OTO commutator between

n1 and n1þx with x positive integer. The late time behavior
after hitting the light cone agrees with our previous findings

PRL 119, 026802 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
14 JULY 2017

026802-3



and takes an order one value as in Eq. (9). For shorter times,
on the other hand, the OTO commutator grows as t2x=ð2xÞ!,
shown in Fig. 2. This follows from a Baker-Campbell-
Hausdorff expansion of theWðtÞ in Eq. (1), with the nested
commutators [8]

WðtÞ ¼ W þ it½H;W� þ ðitÞ2
2!

½H; ½H;W�� þ � � � : ð11Þ

For W ¼ nxþ1, the coefficient of the t2 term in the OTO
commutator arises from the second term in Eq. (11) as
h½½H; nxþ1�; n1�2i. However, this vanishes for x > 1, since

the ½H; nxþ1� commutator contains fermionic operators
with indices from x to xþ 2, which commute with n1.
At distance x, the commutators start contributing at xth-
order nesting, yielding a leading power t2x.
This illustrates that the short-time growth of the OTO

commutator is dictated by the short-range properties of
the model—not accounted for by the low-energy theory
captured by bosonization—such as the range of the
hopping processes or interactions. The short-time growth,
before reaching the light cone, is thus seen to depend on the
high-energy (ultraviolet) part of the spectrum as well [8].
We emphasize that, for x ¼ 0, the t2 prediction is also
confirmed numerically, shown in Fig. 1.
The XXZ Heisenberg chain in Eq. (10) is integrable but

contains high-energy features not accounted for by the LL
model. These dominate only the transient response around
tJ ∼ 1 in Fig. 1. Integrability is destroyed by adding a second
nearest-neighbor density-density (i.e., J0z

P
mnmþ2nm) or

Ising interaction [43] in the spin language, which we have
also studied numerically. It reproduces the central features
found for the integrable case, in particular, the t2 initial
growth of the OTO commutator of the n1 local density as
well as the saturation of the OTO commutator after the light
cone [44].
Concluding remarks.—We have investigated the OTO

correlator in equilibrium and after a quantum quench in one
of the canonical low-dimensional model systems in the
thermodynamic limit, i.e., in a Luttinger liquid. The OTO
commutators display robust behavior, independent of the
temperature, initial state, and protocol (equilibrium time
evolution vs quantum quenches).
In general, the quantum butterfly effect is manifest in an

exponential growth and a large late time value of the OTO
commutator [7,8]. Based on our results, the first feature is
not realized [45] during the time evolution in LL. The short-
time OTO commutator grows with t2, i.e., the lowest
possible power, before reaching the light cone as opposed
to the exponential growth in chaotic systems. LLs are thus
slow information scramblers, with information encoded in
local operators lost slowly.
Surprisingly, the second feature of the butterfly effect

appears also in LLs: The OTO commutators of vertex
operators, which incorporate the phase fluctuation in a
quasicondensate and the 2kF density fluctuations, are often
enhanced significantly in a strongly interacting theory after
hitting the light cone. Thus, the identification of the large
late time value of the OTO commutator as a signature of
chaotic behavior [7,8,10] can be misleading. The time at
which this enhancement occurs defines the scrambling
time, which, in our case, is simply the position of the light
cone, i.e., t ¼ x=vf. This large late time value, growing
with interaction, occurs probably due to the replacement of
the original quasiparticles by collective bosonic modes,
being absent in the noninteracting case. It will be interest-
ing to investigate what the minimal ingredients, and

FIG. 1. ED result for N ¼ 22 for the OTO commutator for the
local charge density in the interacting spinless fermion model.
Red squares and blue circles denote the late time limit in
equilibrium and after a sudden quench from the noninteracting
limit, respectively. The solid line is f sinðKπÞ2 from Eq. (9) with
only the parameter f ¼ 0.15 adjustable. Top inset: Numerical
time evolution of the OTO commutator with the representative
value Jz=J ¼ 0.6 in equilibrium (red dashed line) and after a
sudden quench (blue solid line) from the noninteracting case,
Jz ¼ 0. For a short time (t < 1=J), it follows the predicted t2

(bottom inset).

FIG. 2. ED result for N ¼ 10 for the OTO commutator between
the local charge densities n1 and n1þx in the interacting spinless
fermion model with x ¼ 2 (blue line), 3 (red line), and 4 (green
line) in equilibrium for Jz=J ¼ 0.6; the quench data are indis-
tinguishable in this time window. The thin black dashed lines
denote t2x=ð2xÞ!.
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alternative settings, are for such a transmutation of the
underlying degrees of freedom to yield a characteristic
OTO commutator signal.
Many of these features are benchmarked by exact diago-

nalization calculations on an interacting spinless fermion
model, and they are remarkably robust. We also find that the
short-time dynamics is extremely sensitive to themicroscopic
details of the model under study, yielding a much steeper
initial growth with a power t2x depending linearly on the
distance x of the densities in the OTO commutator.
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