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Inter-Landau-level transitions break particle hole symmetry and will choose either the Pfaffian or the
anti-Pfaffian state as the absolute ground state at 5=2 filling of the fractional quantum Hall effect. An
approach based on truncating the Hilbert space has favored the anti-Pfaffian. A second approach based on
an effective Hamiltonian produced the Pfaffian. In this Letter, perturbation theory is applied to finite sizes
without bias to any specific pseudopotential component. This method also singles out the anti-Pfaffian. A
critical piece of the effective Hamiltonian, which was absent in previous studies, reverts the ground state at
5=2 to the anti-Pfaffian.
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Topological phases of matter have been the focus of much
recent theoretical interest. A prime example of such a phase
[1], which is realized in experiment, is the fractional quantum
Hall effect [2,3] (FQHE). The most intriguing of these
quantum Hall states occurs in the half-filled first excited
Landau level (1LL) [4]. Breaking the odd-denominator trend
of the lowest Landau level (LLL), the state at ν ¼ 5=2 is one
of the strongest FQHE states in the 1LL [5,6]. It has been the
subject of numerous studies and iswidely believed to be in the
universality class of the Moore-Read (MR) state [7], which
is a fully polarized px þ ipy paired state [8] of composite
fermions [9]. The MR state possesses richer excitations than
states dominating the LLL. In particular, the presence of the
neutral Majorana fermion mode results in quasiparticle
excitations exhibiting non-Abelian statistics [7,10–12].
This property has greatly increased interest in the 5=2 effect,
in part due to its potential for quantum information processing
[13,14]. In this Letter we will assume the MR state to be the
underlying phase of the 5=2 effect [15–18].
Particle-hole symmetry and the anti-Pfaffian.—Earlier

studies of the 5=2 state disallowed virtual inter-LL tran-
sitions, which are only exact at infinite cyclotron energy
ℏω. In that case, because of particle-hole (p-h) symmetry,
both the MR or (Pfaffian) state and its p-h conjugate
[19,20] (the anti-Pfaffian) are equally valid candidates for
the 5=2 state. However, they are distinct topological phases
[19,20] of matter. The system will then be forced to choose
one by spontaneously breaking p-h symmetry. On the other
hand, the ubiquity of LL mixing provides a p-h symmetry
breaking field. A measure of the mixing strength is given
by the ratio of typical Coulomb energy ε ¼ e2=4πϵ0l to
the cyclotron energy κ ¼ ε=ℏω, where l is the magnetic
length. In experiments, κ varies from 0.8 to 2.8 and either
the Pfaffian (Pf) or the anti-Pfaffian (aPf) will be favored
as the ground state. Until now, however, which one has not
been definitively determined. What is not controversial is
the more important issue of non-Abelian braiding statistics,
which is shared by both [19–21].

To address the effects of p-h symmetry breaking, several
studies have been carried out using different approxima-
tions. Simon and the present author [22] employed a
truncated model of LL mixing, keeping only 3 LLs
(3-LL model). Additionally we controlled the number of
particle and hole excitations that result from inter-LL
transitions. In a subsequent work by Zaletel et al. [23],
this last restriction was completely removed, while 3-5 LLs
were retained. The authors employed an infinite density
matrix renormalization group (iDMRG) [24]. The method
incorporates the matrix product form [25,26] of FQHE
states on a cylinder of infinite length but finite radius.
Both studies predict the aPf to be favored irrespective of the
strength of κ.
On the other hand, Wojs et al. [27] and more recently

Pakrouski et al. [28] have concluded that the Pf is the
ground state. The authors used effective two-body [29]
and three-body[30] pseudopotentials [31–33] that include
LL-mixing corrections to the lowest order in κ. At first
sight, these calculations cast doubt on the results of the
3-LL model.
In this Letter the issue is revisited in order to resolve

this discrepancy and to compare the 3-LL model predic-
tions to perturbation theory results. The recent calculations
of infinite-size pseudopotentials produced a three-way
agreement [31–33] on their values and are not the cause
of the discrepancy.
Our approach to calculating the effective Hamiltonian

closely follows the previous methods but uses the torus
geometry for finite-size systems. This is the only compact
geometry that avoids the shift [34] and facilitates the
comparison between Pfaffian and anti-Pfaffian. A study
on the sphere is also reported in this Letter which
corroborates the torus results. For this and subsequent
torus results we will follow the method of Wojs et al.
and Pakrouski et al. and use infinite-size perturbation
theory (PT) values of the two-body and the three-body
pseudopotentials.
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The Hamiltonian allowing inter-LL transitions is

H ¼ 1

2

X

fmig
hm1m2jVjm3m4iC†

m1
C†
m2
Cm3

Cm4
; ð1Þ

where m is the combined label of LL index n, linear
momentum k, and spin. VðrÞ is the Coulomb interaction.
For most of this work we will consider the electron
layer width w ¼ 0. The matrix elements in H, which are
independent of spin, are calculated self-consistently for up
to 31 LLs for each size that we studied. Another important
difference with infinite-size calculations is that the three-
body pseudopotential corrections are not singled out by
their relative angular momentum but are automatically
included in their entirety.
The effective Hamiltonian, which includes the lowest

order LL-mixing corrections can be written as

Heff ¼ H1 þ κ
X0

p

HjpihpjH
E0 − Ep

; ð2Þ

where H1 is the Hamiltonian for electrons in the partially
filled 1LL and jpi is an intermediate state with kinetic
energy Ep, which can have at most two electrons in the
excited LLs with index n > 1. E0 is the common kinetic
energy of the appropriate basis states (described below) and
is dropped from Heff . The prime on the sum restricts p so
that Ep ≠ E0. In Eq. (2), the Hamiltonians are expressed in
units of ε and kinetic energies are given in units of the
cyclotron energy.
We will generally consider the matrix elements hijHeff jji,

where the set fjiig is a relevant Slater determinant basis for
Ne valance electrons in the 1LL and includes a lowest LL
filled with both spins. We will choose Ne ¼ 2 or 3 when
calculating pseudopotentials. This form is also readily
applicable when the degeneracy is not completely lifted
after the action of H1, which is the case for certain odd
electron numbers on a hexagonal torus [35]. In this case, the
ground state that represents the basis fjiig is a doublet.
The last term of Heff can be represented by Feynman

diagrams, which have already appeared in print [32,33] and
will not be repeated here. It is then a bookkeeping exercise;
details can be found in Ref. [33]. The results are one-, two-,
and three-body effective interactions for electrons in the
1LL. However, the one-body potentials, by translational
symmetry, are independent of an orbital index. Since they
only serve to modify the chemical potential, they will be
ignored. It will be assumed throughout that the states in the
1LL are fully spin polarized, which is consistent with recent
experiments [36,37] as well as with previous calculations
[15,22,38]. However, virtual reversed spin excitations
from the LLL are allowed. Even these make a negligible
difference and can be ignored.
In the case of a doublet ground state of theH1, we follow

Landau and Lifshitz [39] and diagonalize the LL-mixing
part of the H in the two-dimensional Hilbert space spanned

by the doublet, which separates the Pf and the aPf
components without mixing in any other state of the
H1. Figure 1 shows the difference in the energies Δ0 ¼
jEPf − EaPf j as a function of the number of LLs included in
the sum of Eq. (2). As observed in the 3-LL model [22,23],
the aPf is favored unless only the lowest 2 LLs are kept.
The inset shows Δ0=Ne as a function of 1=Ne. While the
linear regime has not quite been reached and it is difficult to
extrapolate to large sizes, the results are consistent with an
extensive “gap” [23].
Two-body and three-body pseudopotentials.—A very

convenient way of presenting the electronic interaction
potential for quantum Hall states is to express it in terms of
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FIG. 1. Plot of Pf-aPf energy difference Δ0 ¼ jEPf − EaPf j (in
units of εκ) between the aPf and Pf as a function of the number of
LLs included in the present calculation (nmax is the index of the
highest LL). The Pf ground state occurs only when the lowest two
LLs are kept. The inset shows Δ0 for odd sizes divided by the
number of electrons plotted vs 1=Ne.
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FIG. 2. The three-body pseudopotentials (in units of εκ) for
the lowest 9 relative angular momenta M on the torus for
Nϕ ¼ 30 and arranged in ascending order, where Nϕ is the
number of magnetic flux quanta. The values of angular momenta
are indicated above the corresponding bar. The inset shows the
infinite-size PT values. In contrast, the low M pseudopotentials
for the first point in Fig. 1 (a 2-LL system that results in the Pf
ground state) are repulsive: 0.0148 (M ¼ 3), 0.0085 (6), 0.0029
(8), 0.0023 (9), etc.
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the energy (or pseudopotential) for n electrons in a state of
fixed relative angular momentum. It was first introduced by
Haldane [29] for the two-body case and later extended to n-
body interactions by Simon et al. [30]. Figure 2 gives the
values of the three-body pseudopotentials VM (in units of
εκ) in an ascending order. The inset gives the results of
Sodemann and MacDonald, who crucially calculated V9.
In both cases the most important pseudopotentials have
relative angular momenta that are multiples of 3 [40]. The
main difference between the present effective Hamiltonian
and those of Wojs et al. and Pakrouski et al. is the M ¼ 9
three-body pseudopotential. It will be shown that V9 has a
critical role in determining the nature of the ground state. If
included, the ground state reverts to the aPf. Table I gives
the differences of VM from the M ¼ 3 value for finite-size
systems in the present study and compares them with their
infinite-size values. Table II is the same as Table I but for
two-body pseudopotentials, which already are very close to
their infinite size values.
In the remainder of this Letter the effective

Hamiltonian for the infinite system (see Table II and
the inset of Fig. 2) will be used. While the first five
pseudopotentials (in order of their relative angular
momenta) are unique, the M ¼ 9 has two states and a
choice of basis is necessary. The Hamiltonian matrix for
M ¼ 9 and its corresponding basis wave functions are
described by Sodemann and MacDonald [33] and
Laughlin [41], respectively. It is

HðM ¼ 9Þ ¼ −0.0088j0; 3ih0; 3j þ 0.0033j3; 1ih3; 1j
þ 0.0007½j0; 3ih3; 1j þ j3; 1ih0; 3j�; ð3Þ

where the states jl;mi have relative angular momentum
M ¼ 2lþ 3m. The relevant pseudopotentials and their
projection operators are obtained by finding the eigen-
values and eigenvectors of Eq. (3). However, HðM ¼ 9Þ
is well approximated by just the first term, which is the
most dominant by far.
The effective Hamiltonian, including the M ¼ 9 term, is

then diagonalized. In general, the eigenvectors will have a
nonlinear dependence on κ. However, the linear regime will
suffice for our conclusions.
Since on the sphere the Pf and aPf have different

shifts, the Pf for Ne electrons is compared to the aPf with

TABLE I. Comparison of the differences between three-body
pseudopotentials VM for polarized electrons and finite flux sizes
and their infinite size counterparts. The percent differences are
given in the parentheses. For Nϕ ¼ 34, the corresponding entries
for M ¼ 7 and 8 pseudopotentials are, respectively, 0.0152
(1.97%) [0.0152] and 0.0134 (2.90%) [0.0138]. The infinite-size
values are given in brackets.

Nϕ V6 − V3 V9 − V3 V12 − V3 V5 − V3

30 0.0044 (8.3%) 0.0051 (12%) 0.0088 0.0091 (2.2%)
32 0.0044 (8.3%) 0.0051 (12%) 0.0090 0.0092 (1.1%)
34 0.0045 (7.0%) 0.0052 (10%) 0.0090 0.0092 (1.1%)
∞ 0.0048 0.0058 NA 0.0093

TABLE II. The LL-mixing corrections δvm for two-body
pseudopotentials vm (in units of εκ) relative to their respective
δv1 values, for three different flux sizes on the torus. For
polarized electrons only odd values of relative angular momen-
tum m are relevant. The percent differences from infinite PT
results (last row) are given in parentheses.

Nϕ δv3 − δv1 δv5 − δv1 δv7 − δv1 δv9 − δv1

30 0.1094 (0.45%) 0.1767 (0.62%) 0.1994 (0.75%) 0.2067 (0.86%)
32 0.1094 (0.45%) 0.1769 (0.51%) 0.1996 (0.65%) 0.2069 (0.77%)
34 0.1095 (0.36%) 0.1770 (0.45%) 0.1998 (0.55%) 0.2071 (0.67%)
∞ 0.1099 0.1778 0.2009 0.2085
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transition point is at δV9 ≈ 0.0077. Before the transition the
overlap of the ground state with the aPf is 0.70; there is no overlap
with the Pf. After the transition these values are exchanged.

PRL 119, 026801 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
14 JULY 2017

026801-3



Ne − 2 electrons, so that the number of holes Nh ¼ Ne.
This introduces finite-size effects and excludes an energetic
comparison of the two.
Instead we will compare overlaps and the gaps between

respective ground state and the lowest excited state [28].
The gaps track the overlaps and provide another diagnostic
tool. Figure 3 shows the results for Ne ¼ 16 for the Pf and
Ne ¼ 14 for the aPf. It can be seen that now the aPf has the
larger overlaps and gaps.
Transition to the Pfaffian.—Clearly, there will be a

phase transition as the V9 pseudopotential approaches zero.
Making it less attractive weakens the aPf; at V9 ≈ −0.0011 a
first order transition to the Pf is observed. The results for the
Ne ¼ 15 doublet on the torus is shown in Fig. 4. In this case
the aPf-Pf energy difference Δ0 displays a perfectly linear
dependence on V9ð¼ −0.0088þ δV9Þ. It is noteworthy that
to reach the point of transition the magnitude of V9 has to be
reduced by approximately 90% of its nominal value, which
is a measure of how robust the ground state is.
The linear dependence on V9 is also seen on the sphere

(Fig. 5). The trend of the gaps, shown in the inset, track the
corresponding overlaps. The Pf and the aPf have opposing
dependence on V9. The transition point cannot be accu-
rately determined, but it is between the crossing points of
overlaps and the gaps.
Since there is no shift on the torus, comparison of the two

states is straightforward. Figure 6 shows the overlaps as a
function of κ for a series of δV9 values. The dependence on
V9 for each κ is also linear (not shown). In contrast to the
sphere results for small κ, there is opposing dependence of
the overlaps on κ, with the aPf increasing and Pf decreas-
ing. Increasing δV9 past 0.008 reverses the trend and the
overlap with the Pf increases with κ.
Finally, we consider Du’s experiment [42] (κ ¼ 0.8 and

layer widthw ¼ 2.5l). With these values [43] we obtain the
following overlaps for Ne ¼ 16: aPf 63% (55%) and Pf
9.9% (6.6%) for κ ¼ 0.7ð0.8Þ, which are comparable to
those of Fig. 6. Also included are overlaps for κ ¼ 0.7.

Discussion.—Entanglement properties rather than high
overlaps are a better indicator of which topological phase of
matter a particular state may belong. These have already
been reported for the aPf ground state of the Coulomb
potential, both on the cylinder [23] and on the sphere [28].
However, very high overlaps can be reached (97%, κ ¼ 2.1
for Ne ¼ 14 on the sphere and 96%, κ ¼ 1.5 for Ne ¼ 16
on the hexagonal torus) by adiabatically varying the
effective Hamiltonian to include only the three (V3, V6,
and V9) strongest of the three-body pseudopotentials and
the Bishara-Nayak two-body pseudopotentials used by Woj
et al. This can be done without encountering a phase
transition. While these parameters may seem unjustified or
unphysical, they do suggest a broader phase diagram for the
aPf ground state.
We have shown that under plausible experimental con-

ditions the aPf is found to be favored for small LL mixing.
The only exception is when just the lowest two LLs are
kept, then the Pf is preferred.
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