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We numerically investigate and experimentally demonstrate an in situ topological band transition in a
highly tunable mechanical system made of cylindrical granular particles. This system allows us to tune its
interparticle stiffness in a controllable way, simply by changing the contact angles between the cylinders.
The spatial variation of particles’ stiffness results in an in situ transition of the system’s topology.
This manifests as the emergence of a boundary mode in the finite system, which we observe experimentally
via laser Doppler vibrometry. When two topologically different systems are placed adjacently, we
analytically predict and computationally and experimentally demonstrate the existence of a finite-
frequency topologically protected mode at their interface.
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Introduction.—Topological insulators (TIs) constitute an
intense area of recent interest within condensed matter
physics. TIs support directional electron transport on their
surface, and this transport is immune to defects [1]. The
existence of such a surface state has a remarkable corre-
spondence to the nontrivial topological invariants of the
bulk of TIs [2]. Therefore, by knowing the topology of the
bulk, one can predict the response on the surface or edge of
the material. This response is robust against defects on the
surface as long as the topology of the bulk is preserved.
Such topological characterization has naturally emerged as
a tool to design novel mechanical structures with uncon-
ventional vibration properties on their surfaces [3–8]. The
study of these mechanical structures not only realizes the
topological phenomenon in easily controllable and observ-
able macroscale systems but also has potential to shape a
new design paradigm for structural applications, such as
vibration isolation and energy harvesting [9]. At the same
time, the paradigm of TIs has had a significant impact in
other areas, e.g., linear and nonlinear optics [10–14].
A dimer system such as the 1D Su-Schrieffer-Heeger

(SSH) model provides the basic framework to understand
band topology [15–18]. The direct mechanical analogue of
such a dimer has been recently suggested [19]. This system
has a phononic band gapnear zero frequency and, in turn, can
support zero-frequency topological modes. Deviating from
this model, one can also arrive at a mechanical dimer that
results in a non-zero-frequency band gap, potentially leading
to finite-frequency topological modes [20]. This could be
achieved by tailoring the on-site potentials in the standard
SSH model. Such a system would be especially interesting,
as it would enable us to understand how the topological
framework can be used to predict and tailor energy locali-
zation on the edges or interfaces of a structure. To study this

phenomenon in detail, one would ideally need a system that
allows a smooth control over its topological characteristics, in
order to closely observe its effects on the vibration response
of the structure. Achieving such tunability is extremely
challenging in experimental settings, since it requires
well-controlled, in situ manipulation of either the mass or
stiffness. Changing the masses of the dimer lattice demands
manual reassembly of the systems’ constituents [21,22].
Altering the stiffness values via external couplings, e.g.,
magnetoelastic [23], electroelastic [24], and photoelastic
[25] interactions, could make the system cumbersome for
structural uses. The need of precise actuation and measure-
ment adds up to this challenge. This explains why an in situ
topological band transition for finite-frequency elastic vibra-
tions has not been demonstrated experimentally. A design
that can address this challenge would not only contribute to
our general understanding of topological mechanical sys-
tems; it also holds promise towards catalyzing the imple-
mentation of stand-alone structures with tunable energy
localization characteristics.
For this purpose, we use a granular system made of

cylindrical particles interacting through the Hertz contact
law [26]. This system is highly tunable in that the
interparticle stiffness can be changed simply by altering
the contact angles between cylinders [27]. Such a versatile
structure has been recently exploited for manipulating
stress waves in linear [28], linear time-dependent [29],
and nonlinear media [30]. To overcome the experimental
challenges with regard to controlling the contact angles and
conducting precise measurements, we devise an experi-
mental setup of a tunable, stand-alone cylindrical particle
system. This involves 3D-printed enclosures intended to
support and tune the granular chain and to facilitate
particles’ velocity measurements through a laser Doppler
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vibrometer (LDV). Using this tabletop setup, we validate
the in situ topological band transition in the system by
detecting the emergence of an experimentally measured
boundary mode. We further demonstrate the existence of a
topologically protected mode at the interface of two
topologically distinct granular chains. Last, we theoreti-
cally calculate the frequency of the topologically protected
mode using symmetries in its shape and show that it has an
excellent agreement with numerics and experiments.
Experiment and numerical setup.—The experimental

setup consists of a chain of short cylinders placed inside
3D-printed enclosures stacked vertically (Fig. 1). Each
enclosure along with its cylinder can be independently
rotated about its central axis to change the stacking angles
of the particles.Wemaintainperiodically varying two contact
angles α0 and α, such that the system resembles a dimer
configuration. To demonstrate the topological transition, we
fix α0 to 20° and vary only α from 5° to 40°. The chain is
composed of 27 cylinders, and all cylinders are made of
fused quartz (Young’s modulus Y ¼ 72 GPa, Poisson’s ratio
μ ¼ 0.17, and density ρ ¼ 2187 kg=m3) with identical
diameter and a length of 18 mm. A piezoactuator excites
the bottom of the chain to send a frequency sweep signal
from 3 to 30 kHz. A freeweight (25N) is placed on the top of
the chain to provide initial static compression to restrict the
system dynamics to the linear regime. We track the velocity
of each cylinder using an LDV mounted on a guide rail.
Note that we have judicially designed the enclosure to
facilitate the passage of the laser beam emanating from
the LDV in various angles (top inset in Fig. 1).
We use a discrete element method to model the system

dynamics [31]. We represent the cylinders by lumped
masses and the contacts by springs following the Hertz
contact law. The force between the ith and (iþ 1)th

cylinders can be written as Fi ¼ βðαiÞ½δi þ ui − uiþ1�3=2,
where βðαiÞ is the stiffness coefficient for the contact angle
of αi; δi is the initial static compression due to the free
weight; ui and uiþ1 denote the dynamic displacements of
the ith and (iþ 1)th cylinders in the longitudinal direction,
respectively (see Supplemental Material for details [32]).
If jui − uiþ1j ≪ δi, as is the case here, we can linearize the
contact law. Hence, the contact between the ith and (iþ 1)
th cylinders can be assigned to a linear stiffness coefficient,
KðαiÞ ¼ 3

2
βðαiÞδ1=2i . This means that a dimer configuration

with alternating α0 and α angles can be represented by a
lumped mass model with linear stiffness coefficients Kðα0Þ
and KðαÞ, varying along the chain (bottom inset in Fig. 1).
For an infinitely long dimer chain, it is straightforward to

establish a linear dispersion relation and calculate the edges of
Bloch bands [34]. For a finite lattice, however, we expect to
observe boundary effects. To this end,weperform the relevant
eigenvalue analysis. For an N particle chain, we use
u ¼ ½u1; u2; u3;…; uN � ¼ U expðjωtÞ, where U and ω
represent amplitude of displacement vector and angular
frequency, respectively, t is the time, and j is an imaginary
unit. Thus, by neglecting dissipation in the system, we obtain
ΛU ¼ ω2mU, wherem is the particle mass and Λ is aN × N
tridiagonal matrix consisting of stiffness coefficients Kðα0Þ
and KðαÞ. This finite system also accounts for the boundary
condition of the finite system. Specifically, we fix the
boundaries by choosing stiffness values Ka ¼ 2.78 × 107

N/m and Kw ¼ 1.62 × 107 N/m at the beginning (actuator
side) and the end of the chain, respectively, to match the
experimental data [32]. Using this finite setup, we evaluate
eigenfrequencies and eigenmodes of the system in compari-
son with analytical and experimental data.
Results and discussions: Topological band transition in

infinite lattices.—We first investigate the topological char-
acteristics of the infinite dimer lattices. Figure 2 shows three
dimer configurations that represent a topological band
transition within our system. Theoretically obtained Bloch
dispersion curves are plotted below, showing acoustic
(lower) and optical (upper) branches [32]. A frequency band
gap spans from ð1=2πÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Kðα0Þ=m
p

to ð1=2πÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2KðαÞ=mp

,
and the upper band edge of the optical band is at
ð1=2πÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2½Kðα0Þ þ KðαÞ�=mp

. We notice that if α increases,
the frequency band gap first closes at α ¼ α0 and then opens
again. In this process, Bloch eigenmodes on the edges of
the band gap are also flipped [see the change between [1, 1]
and ½1;−1� in Figs. 2(a) and 2(c)]. This indicates a typical
topological band transition in our system as a function of the
angle α. The system shifts between distinct dimer configu-
rations that cannot be transformed to each other without
closing the band gap. The mathematical quantification of
this notion can be made by calculating the so-called Zak
phase for each band; see Supplemental Material [32] for
detailed calculations.
One notices that the Zak phase of a band directly relates

to the symmetry types of Bloch eigenmodes at its lower

FIG. 1. Schematic of the experimental setup. The top inset
illustrates a cut section of the 3D-printed enclosure. The bottom
inset shows the contact angles in the dimer chain and the
representative spring-mass system.
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and upper band edges. The Zak phase of 0 indicates the same
symmetry type [see Fig. 2(c), where the Bloch eigenmodes
remain the same within the branch]. On the other hand, the
Zak phase of π implies the formation of the opposite
symmetry type within a band [Fig. 2(a), where the Bloch
eigenmodes are flipped]. We evidently see the topological
characteristics of a band gap are linked to the sum of the Zak
phases of all the bands below the gap [35]. Therefore, the
change in the Zak phase of the acoustic band confirms the
in situ topological transition of our infinite lattice system.
Emergence of boundary mode in finite lattices.—The

topological nature of bulk band gaps observed for an
infinite lattice manifests itself through the emergence of
boundary mode(s) inside the band gaps for a finite lattice
(i.e., the principle of bulk-boundary correspondence) [1].
Therefore, we expect the existence of a boundary (local or
edge) mode in the current topologically nontrivial dimer
configurations. We extract the cutoff frequencies and the
local mode information from experimental data with α
varying from 5° to 40° in steps of 5° (see Supplemental
Material [32] for details). Figure 3(a) summarizes the
modal frequencies of the system as we vary α. Shaded
areas denote modes corresponding to acoustic and optical
branches of dispersion curves, constructed theoretically.
We observe an excellent match of the experimental data
(gray square markers) with the edges of the theoretical
bands. This successfully demonstrates the band gap closing
and opening mechanism in our tunable system.
Because of the finite size of the chain, we experimentally

observe a local mode residing inside the band gap (red
square markers for α < α0). Black curve data, obtained
through the numerical eigenvalue analysis, follow the
same trend. These are boundary modes localized in the
front of the chain, which are not witnessed when α > α0.
The emergence of these modes from all configurations that
satisfyα < α0 complieswith the change in the band topology

at α ¼ α0. In Fig. 3(b), we plot the Zak phase of
the acoustic band as a function of α to support the afore-
mentioned argument.
In Figs. 3(c)–3(e), we show the normalized velocity

profiles of the boundary modes extracted from the experi-
ments and the eigenanalysis. These exponentially decaying
profiles match closely between experiments and numerics.
The localization length, however, increases as we move
from α ¼ 5° to α ¼ 15°. This can be explained by extend-
ing the intuitive arguments in Ref. [36], according to which
the localization length depends on the stiffness ratio as
ξ ∝ 1= ln½KðαÞ=Kðα0Þ�. Therefore, the localization length
becomes large as we increase α for α < α0, and it is natural
to expect that the mode becomes extended and is lost inside
the band in the limit of α → α0.
We note that the study of these boundary modes, i.e., the

gap modes in classical lattices, can be traced back to the
pioneering work of Wallis [37]. He extensively explored
the effect of finite boundaries and defects on the spectrum
of ordered lattices in terms of the generation of gap modes.
However, the novelty of the first part of this work is that we
have kept the boundary conditions and the length of the
system the same and experimentally demonstrated how the
change in bulk properties reflects in the emergence of a
finite-frequency boundary mode as per the topological
band theory for 1D dimers.
Topological defect and protected modes.—Wenow study

the ramifications of having two topologically different dimer
configurations connected to each other. We assemble two
dimer chains both with α0 ¼ 10° (hard) and α ¼ 20° (soft),
which connect with each other in mirror symmetry, such that

FIG. 3. Topological transition and emergence of a boundary
mode in the finite system. (a) Frequency spectrum evolution as a
function of α. Extracted experimental data (gray markers) match
the edges of theoretical bulk bands (shaded area). Also, experi-
ments (red markers) show the emergence of a boundary mode
inside the band gap, which follows the trend of numerical
simulations (black curve). (b) Zak phase of the band gap and
its transition at α ¼ α0. (c)–(e) Numerical (black markers) and
experimental (red markers) boundary mode profiles in terms of
normalized velocity amplitude at α ¼ 5°, 10°, and 15°.

FIG. 2. Representative configurations of the infinite dimer chain
to show its topological band transition as a function of α. (a), (b),
and (c) include theBloch dispersion curves forα < α0,α ¼ α0, and
α > α0, respectively. Bands are marked with the corresponding
topological indices (0 and π) and the Bloch eigenmodes on their
edges ([1, 1] and ½1;−1� for symmetric and antisymmetric
oscillations in the dimer unit cell, respectively).
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we introduce a topological defect at their interface (see the
top panels in Fig. 4 and also Refs. [8,38] for similar settings).
The connecting interface canbeof two types: 10°–10° or 20°–
20°, representing hard-hard and soft-soft interfaces, respec-
tively. To understandwhy this defect is topological andhow it
is different from a trivial defect, we present the following
argument. Suppose we can modify any interparticle contact
stiffness along the chain. Now, in a dimer system, a
topologically trivial defect can be introduced by going to
the desired location in space and changing the stiffness
locally. Similarly, the argument can be made that if there is a
trivial defect, we can go to the defect site and perturb the
stiffness locally to restore the original defect-free dimer
configuration. However, the case of a topologically non-
trivial defect is special in that it cannot be straightforwardly
reverted to such a defect-free scenario through a compact
(i.e., local) perturbation. In otherwords, if one tries to remove
the topological defect by changing the local stiffness, one
can see that it is not possible unless all stiffness values on one
side of the chain are modified (i.e., a noncompact perturba-
tion). In essence, a topological defect can be removed only
by changing the topology of one side of the configurations
adjacently placed. Therefore, the vibration mode caused
by this defect is topologically protected and robust against
local perturbations around the interface location (see
Supplemental Material for details [32]).
To demonstrate the topologically nontrivial modes, we

follow the same procedure as mentioned in the earlier
section for the experimental study. A piezoactuator is used
for sending a frequency sweep signal from one end. It is
understood that if a vibration mode caused due to a defect
is localized in the middle of the chain, it is not easy to excite
it using the input signal sent from the end of the chain.
However, our current system is short enough that the
topologically protected (TP) mode—localized in the

middle of our short chain—can still be excited by coupling
it to the evanescent waves inside the band gap. In this way,
we detect the existence of TP modes for hard-hard and soft-
soft configurations (Fig. 4). Power spectral density (PSD)
plots are obtained experimentally by performing Fourier
transformation on the temporal velocity profiles of all
particles in each chain. As indicated by the arrows, we
can evidently observe the existence of the TP modes in both
cases. In the bottom panel, we show the extracted normal-
ized mode shapes from the experimental data, which agree
with the corresponding computed eigenmodes. The
deviation in the initial part of the chain is due to the
evanescent wave in experiments, which the numerical
eigenanalysis does not incorporate.
Last, we derive analytical expressions for the frequen-

cies of the TP modes by utilizing the symmetries of their
eigenmodes, which are evident through their spatial
waveform (bottom panel in Fig. 4). Let Kh and Ks denote
the linear stiffness corresponding to hard (10°) and soft
(20°) contacts. For the hard-hard interface, we observe
from the mode shape that alternate particles do not move,
while the rest of the particles oscillate around their
equilibrium positions. Thus, considering that their net
stiffness is Kh þ Ks, the frequency of the TP mode in this
hard-hard case would be fh ¼ ð1=2πÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðKh þ KsÞ=m

p

.
Similarly, for the soft-soft interface, one can derive that
the frequency is fs ¼ ð1=2πÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ksð1þ γ−1Þ=m
p

, where
γ ¼ ð3r − 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9r2 − 14rþ 9
p

Þ=½2ðr − 1Þ� with r ¼
Kh=Ks (see Supplemental Material for further details
[32]). We compare these analytical frequencies with the
experimental values extracted directly from the spectrum
plots in Fig. 4 and the numerical ones obtained from the
eigenanalysis. For the current configuration, we find the
frequency of the hard-hard TP mode is 12.18 (theory),
12.18 (numerics), and 12.15� 0.19 kHz (experiment).
Similarly, the frequency of the soft-soft TP mode is
11.80 (theory), 11.80 (numerics), and 11.70� 0.08 kHz
(experiment). Here, the standard deviations in experi-
ments are based on the frequencies measured from all
cylinder locations.
Judging from the agreement of analytical frequencies

with computational and experimental results, these math-
ematical expressions can be used for distinguishing the TP
modes from trivial defect modes. We see that for any values
of Kh and Ks (complying with Kh > Ks), the interface
modes exist and the corresponding frequencies reside
inside the band gap without coalescing with the bulk
bands. Hence, the modes are protected as long as we have
a topological defect (hard-hard or soft-soft) created at the
intersection of two topologically distinct dimer configura-
tions. Again, these TP modes are robust against perturba-
tions near the interface in contrast to trivial defect modes,
and we verify the nature of the TP modes via numerics in
Supplemental Material [32] (see also other related works,
such as Refs. [39–41], on 1D topological interface modes).
Conclusions.—In this work, we proposed a highly

tunable mechanical system made of cylindrical granular

FIG. 4. Topologically protected modes arising from dimer
configurations with (a) hard-hard and (b) soft-soft interfaces.
Below are PSD plots obtained from the particles’ velocities
measured experimentally. At the bottom are the TP mode shapes
extracted from experiments (red markers) and eigenanalysis
(black markers).
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particles, which can demonstrate an in situ topological band
transition in a controllable manner. Using noncontact laser
vibrometry, we precisely captured the smooth topological
transition and showed how it leads to the emergence of
a boundary mode in the system. We demonstrated the
existence of topologically protected modes at the interface
of two topologically distinct dimer configurations. The
experimental observations of the resulting modes are
supported by the theory and numerics. We also confirmed
that these topologically protected modes are robust under
perturbations, unlike trivial defect modes observed in granu-
lar chains. Though the current study is limited to linear
dynamics, the proposed system can be tuned to incorporate
nonlinear effects. In that light, this framework can provide a
promising test bed for future studies involving the interplay
of nonlinearity and topologically protected modes.
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