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We demonstrate that two-dimensional atomic emitter arrays with subwavelength spacing constitute
topologically protected quantum optical systems where the photon propagation is robust against large
imperfections while losses associated with free space emission are strongly suppressed. Breaking time-
reversal symmetry with amagnetic field results in gapped photonic bandswith nontrivial Chern numbers and
topologically protected, long-lived edge states. Due to the inherent nonlinearity of constituent emitters, such
systems provide a platform for exploring quantum optical analogs of interacting topological systems.
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Charged particles in two-dimensional systems exhibit
exotic macroscopic behavior in the presence of magnetic
fields and interactions. These include the integer [1], frac-
tional [2], and spin [3] quantum Hall effects. Such systems
support topologically protected edge states [4,5] that are
robust against defects and disorder. There is a significant
interest in realizing topologically protected photonic sys-
tems. Photonic analogs of quantumHall behavior have been
studied in gyromagnetic photonic crystals [6–11], helical
waveguides [12], two-dimensional lattices of optical reso-
nators [13–15] and in polaritons coupled to optical cavities
[16]. An outstanding challenge is to realize optical systems
which are robust not only to some specific backscattering
processes but to all loss processes, including scattering into
unconfined modes and spontaneous emission. Another
challenge is to extend these effects into a nonlinear quantum
domain with strong interactions between individual excita-
tions. These considerations motivate the search for new
approaches to topological photonics.
In this Letter, we introduce and analyze a novel platform

for engineering topological states in the optical domain. It is
based on atomic or atomlike quantum optical systems [17],
where time-reversal symmetry can be broken by applying
magnetic fields and the constituent emitters are inherently
nonlinear. Specifically, we focus on optical excitations in a
two-dimensional honeycomb array of closely spaced emit-
ters. We show that such systems maintain topologically
protected confined optical modes that are immune to large
imperfections as well as to the most common loss processes
such as scattering into free-spacemodes. Suchmodes can be
used to control individual atom emission, and to create
quantum nonlinearity at a single photon level.
The key idea is illustrated in Fig. 1(a). We envision an

array with interatomic spacing a and quantization axis ẑ

FIG. 1. (a) Honeycomb lattice of atomic emitters with inter-
atomic spacing a. Each atom has a V-type level structure with
optical transitions to the jσþi and jσ−i states. A magnetic field
breaks the degeneracy via the Zeeman splitting. (b) Band structure
of the lattice with B ¼ 0. Green dashed lines indicate the edges of
the free-space light cone. Modes with quasimomentum kB <
ωkB

=c couple to free-space modes and are short lived (green
shaded region). Decay rates of the modes are color coded. Bands
are degenerate at the symmetry points K and Γ. (c) A transverse
magnetic field (μB ¼ 12Γ0) opens a gap (grey shaded region)
between topological bands with nontrivial Chern numbers. Rel-
evant parameters are λ¼790nm, Γ0¼2π×6MHz, and a ¼ 0.05λ.
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perpendicular to the plane of the atoms. Each emitter has a
V-type level structure with transitions from the ground
state to the excited states jσþi and jσ−i, excited by the
corresponding polarization of light [18]. The hybridized
atomic and photonic states result in confined Bloch modes
with large characteristic quasimomenta that for dense
atomic arrays significantly exceed the momentum of
free-space photons. These confined modes are outside of
the so-called “light cone” and are decoupled from free
space resulting in long-lived, subradiant states [19]. Atomic
Zeeman shifts induced by a magnetic field create a band
gap in the optical excitation spectrum, and the Bloch bands
acquire nontrivial Chern numbers. The resulting system
displays all essential features associated with topological
robustness. Before proceeding, we note that polar mole-
cules coupled via near-field interactions [21,22] and exci-
tons in Moiré heterojunctions [23] have been shown to give
rise to chiral excitations in 2D. In contrast, the present
analysis includes both near- and far-field effects as well as
scattering to free space. We also note that the emergence of
Weyl excitations has been recently predicted [24] in 3D
lattices of polar particles.
In the single excitation case, following the adiabatic

elimination of the photonic modes, the dynamics of the
system (no-jump evolution in the master equation [25]) can
be described by the following non-Hermitian spin
Hamiltonian [17,26–29]

H ¼ ℏ
XN

i¼1

X

α¼σþ;σ−

�
ωA þ sgnðαiÞμB − i

Γ0

2

�
jαiihαij

þ 3πℏΓ0c
ωA

X

i≠j

X

α;β¼σþ;σ−

Gαβðri − rjÞjαiihβjj; ð1Þ

where N is the number of atoms, ωA ¼ 2πc=λ is the atomic
transition frequency with wavelength λ, μB is the Zeeman-
shift of the atoms with magnetic moment μ due to an out-
of-plane magnetic field B ¼ Bẑ with sgnðσ�Þ ¼ �. Here,
Γ0 ¼ d2ω3

A=ð3πϵ0ℏc3Þ is the radiative linewidth of an
individual atom in free space, c is the speed of light, d
is the transition dipole moment, GαβðrÞ is the dyadic
Green’s function in free space describing the dipolar
spin-spin interaction [30], and ri denotes the position of
the atoms. Note that the Hamiltonian in Eq. (1) assumes the
atoms are pinned to the lattice. The effect of fluctuating
atomic positions is discussed in Ref. [30].
For an infinite periodic honeycomb lattice, the single

excitation eigenmodes of Eq. (1) are Bloch modes [38]
given by

jψkB
i ¼

X

n

X

b¼1;2

eikB·Rn ½cbþ;kB
jσbþ;ni þ cb−;kB

jσb−;ni�; ð2Þ

where the summation runs over all lattice vectors fRng,
b ¼ 1, 2 labels the two atoms within the unit cell, and kB is

the Bloch wave vector. For each kB there are four eigen-
values of the form EkB

¼ ωkB
− iγkB

, where the imaginary
part corresponds to the overall decay rate of the modes [30].
Figure 1(b) shows the band structure in the absence of a

magnetic field along the lines joining the symmetry points
M, Γ, and K of the irreducible Brillouin zone [see inset of
Fig. 1(c)]. The decay rates of the modes (γkB

) are shown
using a color code. Crucially, we find that the decay rate of
some modes can be significantly smaller than Γ0=2 due to
collective interference effects. Green dashed lines at kB ¼
2π=λmark the edges of the light cone corresponding to free
space modes with dispersion ωkB

¼ kBc. The modes close
to the center of the Brillouin zone (Γ) have quasimomenta
kB less than the maximum momentum of free space
photons at the same energy (kB < ωkB

=c). These modes
couple strongly to free-space modes with matching energy
and momentum and decay rapidly [30]. In contrast, modes
with quasimomenta greater than the momentum of free
space photons (kB > ωkB

=c) are completely decoupled
and do not decay into free space due to the momentum
mismatch.
Figure 1(b) also shows that the photonic bands are

degenerate at the symmetry points Γ and K in the absence
of a magnetic field. These degeneracies originate from the
degeneracy of the jσþi and jσ−i states at zero magnetic
field. Due to the lattice symmetries, the degeneracy at the Γ
point is quadratic [39], while a linear Dirac cone is formed
at the K point [7]. Applying an out-of-plane magnetic field
lifts this degeneracy and an energy gap forms across the
Brillouin zone.
We explore the topological nature of these bands, by

calculating the Chern numbers using the method described
in Ref. [40]. The sum of the Chern numbers above and
below the band gap is þ1 and −1, respectively. The origin
of these topological bands can be understood intuitively by
noting that at the K point the modes separated in energy

FIG. 2. (a) Size of the gap between topological bands (blue line)
as a function of magnetic field for a ¼ λ=20. (b) The maximum
gap size Δmax (blue dotted line) as a function of the interatomic
spacing a. The solid magenta line shows the dipolar interaction
strength J between two atoms with parallel dipole moments. The
dashed green line is a phenomenological J ∼ 1=r3 fit. For a ≪ λ,
Δmax scales as 1=a3.
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due to Zeeman splitting have, respectively, σ̂þ and σ̂−
circular polarizations. The opposite chirality of the bands
reflects the time-dependent circular rotation of the electric
fields associated with the σ̂þ and σ̂− polarizations in the
x-y plane.
The size of the topological gap at the K point scales

linearly with the magnetic field due to the Zeeman splitting
(2μB) of the jσþi and jσ−i states [Fig. 2(a)], but the gap size
is eventually limited to a maximum value Δmax due to the
level repulsion between the two upper bands at the Γ point.
Figure 2(b) shows the maximum gap size as a function of
the interatomic spacing a (blue dotted line). The strength of
the dipolar coupling J ¼ 3πΓ0c=ωAGxxðaÞ between two
parallel dipoles at a distance a is also shown. The close
agreement between the two curves shows that the maxi-
mum gap size is determined by the dipolar interaction
strength between the atoms. For a ≪ λ the maximum gap
size has the simple scaling Δmax ∼ 1=a3.
Gaps between topological bands are typically associated

with the presence of one-way reflection-free edge modes at
the boundaries of a finite system. To explore the spectrum
of edge modes in the gap, we calculated the band structure
for periodic stripes of atoms in a honeycomb lattice. The
stripes may have bearded, armchair, or zig-zag edges
[41,42]. Figure 3 shows the edge geometries and the
corresponding band structures of stripes with bearded
and armchair edges. Zig-zag edges are discussed in

Ref. [30]. Edge modes on the lower (upper) edge of the
stripe traversing the gap have positive (negative) group
velocity and carry energy to the right (left). Thus, energy
transport by edge modes is unidirectional as a consequence
of the broken time-reversal symmetry of the system. If the
direction of the magnetic field is flipped, the direction of
the energy flow on any given edge is reversed. Edge modes
on bearded boundaries have quasimomenta kB > ωkB

=c
while crossing the gap and therefore couple weakly to free-
space modes making them long lived. In contrast, modes
on the armchair edges cross the gap with quasimomenta
kB < ωkB

=c and the relatively strong coupling to free-space
modes makes them short lived. The lifetimes of edge modes
are also influenced by the lattice size. Increasing the
number of atoms N in a finite lattice decreases the losses
from finite-size effects and increases the lifetimes of long-
lived edge modes [30].
Figure 4 illustrates the unidirectional energy transport. It

shows a honeycomb lattice of atoms with an overall
hexagonal shape and a large defect on one edge. The

FIG. 3. Topological edge states on the (a) bearded and (b) arm-
chair edges of periodic stripes of atoms. Each edge supports only
one unidirectional mode. Modes propagating on the upper
(lower) edges of the stripes are marked by diamonds (squares)
in the band diagrams. Bulk modes are marked with dots. Decay
rates of the modes are color coded. Modes of the bearded
(armchair) edges cross the gap with quasimomentum kB > ωkB

=c
(kB < ωkB

=c) making them long (short) lived. Parameters are the
same as in Fig. 1(c). The spectrum was obtained for the bearded
(armchair) edges from a 40 × 42 (40 × 41) lattice of atoms with
periodic boundary conditions along the first dimension. States for
which the ratio of the total amplitude on the top (bottom) four
atom rows to the bottom (top) four rows is greater than 15 are
classified as edge states.

FIG. 4. Snapshot of the time evolution (at t ¼ 5.7Γ−1
0 ) of the

system as an atom on the edge (red star) is driven by a laser
(inset). The color code shows the excitation probability
jhψðtÞjσiþij2 þ jhψðtÞjσi−ij2 at each atomic site i ¼ 1;…; N.
Approximately 96% of the emitted excitation is coupled into
the forward direction and scattering into bulk and backward edge
modes is strongly suppressed. The excitation goes around corners
and routes around the large lattice defect. Relevant parameters
are N ¼ 1243, λ ¼ 790 nm, Γ0 ¼ 2π × 6 MHz, a ¼ 0.05λ,
and μB ¼ 12Γ0. The strength of the drive is Ω ¼ 1=5Γ0

and the driving frequency is ωL ¼ ωA þ 15Γ0. The driving
laser is adiabatically switched on with a Gaussian profile
ΩðtÞ ¼ Ω expð−½t − 1.5Γ−1

0 �2=½0.15Γ−2
0 �Þ for t < 1.5Γ−1

0 .
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geometry was chosen such that in the absence of defects, all
boundaries are bearded edges supporting long-lived edge
modes. An out-of-plane magnetic field B induces a band
gap of size Δ in the energy spectrum. An atom on the
boundary is adiabatically addressed by a laser at a fre-
quency ωL resonant with the long-lived edge modes in the
topmost part of the band gap. The laser drives the σþ and
σ− transitions of the atom off-resonantly with equal
coupling strengths Ω, where Ω ≪ Δ. Figure 4 shows a
snapshot of the excitation probability of each atom in the
lattice. Approximately 96% of the excitation emitted by the
driven atom is coupled into the edge modes carrying energy
in the forward direction. Coupling into the backward
direction or into the bulk modes is suppressed due to
topology and the large band gap. These results are
qualitatively independent of the relative driving strengths
of the σ− and σþ transitions [30]. The excitation routes
around lattice corners with ∼97% efficiency and goes
around defects of arbitrary shape and size by forming
new edge modes at the defect boundaries as shown in
Fig. 4, where ∼83% of the excitation survives. Atomic
emission in the bulk is discussed in Ref. [30].
The distance the photon propagates on an edge is set by

the ratio of the group velocity and the intrinsic lifetime of
the edge modes. The group velocity of the edge modes
traversing the gap is vg ≈ δω=δkB ∼ Δ=ðπ=aÞ, where Δ is
the size of the energy gap and a is the interatomic spacing.
Thus for a ≪ λ, the maximum group velocity of the edge
modes scales as vg ∼ Δmax=ðπ=aÞ ∼ a−2. While bearded
edges support long-lived modes, any departure from the
ideal hexagonal shape of Fig. 4 creates a combination of
armchair and zig-zag modes that couple more strongly to
free-space modes and thus have limited lifetimes. To ensure
that only a small fraction of the excitation is lost while the
photon is routed around a defect, large group velocities and,
therefore, small interatomic spacing is required.
We note that efficient coupling of individual quantum

emitters to a confined unidirectional channel (Fig. 4)
immediately implies the feasibility of quantum nonlinear
interactions between individual photons. This can be
understood by considering a “defect atom” placed along
the path of the edge excitation. Such an atom can be used to
capture and store an incident photon in a long-lived atomic
state, following e.g. Ref. [43] (see also Refs. [44–47]).
After photon storage, the defect atom will form a lattice
defect for subsequent incoming photons, which will be
routed around this defect and, as a result, will acquire a
nonlinear phase shift.
Atomic arrays with much smaller interatomic spacing

than the transition wavelength (a ≪ λ) could be experimen-
tally realized using state-of-the-art experiments with
bosonic Stronium atoms [24,48]. Mott insulators in the
1S0 ground state of 84Sr atoms using a 532 nm trapping laser
have been realized experimentally [49] and the atoms can be
further transferred to themetastable 3P0 state [50]. Using the

long-wavelength 3P0–
3D1 transition with λSr ¼ 2.6 μm for

atom-atom interactions would give a ¼ 2λlaser=ð3
ffiffiffi
3

p Þ ¼
λSr=12.7 in an optical honeycomb lattice. The interatomic
spacing could be further reduced to a ¼ λSr=16.3 using a
412.8 nm “magic wavelength” trapping laser providing
equal confinement for the 3P0 and 3D1 states [48].
Typical trapping frequencies in Mott insulators are
∼5Erecoil=h [51], where Erecoil=h ≈ 13 kHz for Stronium.
Since the linewidth is ΓSr ¼ 290 kHz for the 3P0–

3D1

transition, the motional states of individual atoms are not
well resolved andwe expect heating due to photon scattering
to be small. The main experimental challenge is to ensure
near-unity lattice filling [52] and near-uniform excitation of
atoms to the 3P0 state. Other approaches to deep subwave-
length atomic lattices include utilizing vacuum forces in the
proximity of dielectrics [53], using adiabatic potentials [54],
dynamic modulation of optical lattices [55], or subwave-
length positioning of atomlike color defects in diamond
nanophotonic devices [56–59] [60].
Subwavelength emitter lattices could also be created using

monolayer semiconductors, such as transition metal dichal-
cogenides (TMDCs) [61–66]. Large splitting of the σþ, σ−
valley polarizations due to interaction-induced paramagnetic
responses was recently demonstrated in TMDCs [67].
Moiré patterns [68] could provide deep subwavelength
(a < 36 nm) periodic potentials for TMDC excitons and
give rise to topological bands and chiral excitonic edge states
[23]. In suchMoiré heterojunctions the band gaps—and thus
the group velocities of edge states—are predicted to be small
(Δ < 1Γ0). However, as our current analysis shows, edge
states outside the light cone would be long lived and thus
could still propagate a significant distance along the edges of
TMDCs prior to decay into far field modes.
In summary, we have shown that two-dimensional atomic

lattices can be used to create robust quantum optical systems
featuring band gaps between photonic bands with nontrivial
Chern numbers. For a finite lattice, unidirectional reflection-
free edges states form on the system boundaries at energies
inside the band gap. These edge modes are robust against
imperfections in the lattice as well as scattering and
emission into free space. These can be used, e.g., to control
emission of individual atoms. We emphasize that, in
contrast to linear topological photonic systems, a distin-
guishing feature of the present approach is the intrinsic,
built-in nonlinearity associated with quantum emitters in the
lattice, which leads to strong interactions between individ-
ual excitations. Harnessing such interactions could open up
exciting possibilities for studying topological phenomena
with strongly interacting photons, including quantum opti-
cal analogs of fractional quantum Hall states. These include
exotic states, such as those with filling fractions ν ¼ 5=2
and ν ¼ 12=5, which may feature non-Abelian excitations
[69]. In addition, the inherent protection against losses may
also be used for the realization of robust quantum nonlinear
optical devices for potential applications in quantum infor-
mation processing and quantum state transfer [70].
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