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Pulsed Entanglement of Two Optomechanical Oscillators and Furry’s Hypothesis
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A strategy for generating entanglement between two separated optomechanical oscillators is analyzed,
using entangled radiation produced from down-conversion and stored in an initiating cavity. We show that
the use of pulsed entanglement with optimally shaped temporal modes can efficiently transfer quantum
entanglement into a mechanical mode, then remove it after a fixed waiting time for measurement. This
protocol could provide new avenues for testing for bounds on decoherence in massive systems that are
spatially separated, as originally suggested by Furry not long after the discussion by Einstein-Podolsky-

Rosen and Schrodinger of entanglement.
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Introduction.—Macroscopic mechanical oscillators have
now been cooled to their quantum ground state [I1—4],
followed by the observations of macroscopic quantum
effects [5—8] including quantum entanglement [9] between
a mechanical oscillator and a radiation field. Even more
spectacular demonstrations of macroscopic quantum proper-
ties will soon become achievable [10—13]. An important goal
is to demonstrate long-lived entanglement between two
separated mechanical systems. This would enable new tests
of quantum mechanics, including the possible decoherence
of EPR entanglement with spacelike separation.

The intriguing idea of spatially dependent decoherence
[14] was proposed by Furry just after the publication of the
original EPR paradox [15] and entanglement papers [16].
This hypothesis (called Method A in Furry’s paper) is not
predicted by conventional quantum mechanics. It could
occur in a modified quantum mechanics, that includes
quantum gravity or other types of intrinsic decoherence.
This differs from the well-known proposals [17-20] which
focus on the collapse of the wave function of a macroscopic
superposition state. Experiments show that spatially depen-
dent decoherence is not observed for massless photons [21],
although calculations suggest a small decay due to space-
time curvature [22]. However, there are no measurements yet
of such entanglement decay with massive, separated objects
having an entangled center-of-mass motion. Experiments
would enable bounds to be placed on the parameters leading
to a mass-dependent decay of entanglement in Furry
decoherence models [23]. Gravity-wave detectors [24] and
optomechanical entanglement [9] demonstrate the possibil-
ity of investigating questions like this.

In this Letter, we propose and analyze a simple pulsed
protocol for creating and measuring such macroscopic
entanglement. The basic experimental setup involves an
entangled source and spatially separated quantum optome-
chanical systems. An optical parametric amplifier creates
two entangled modes [25-28], ideally with the same fre-
quency and different polarizations. This entanglement is
transferred, on demand, to the separated quantum optome-
chanical systems—thus destroying the initial entanglement
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in optical modes. The entangled mechanical modes are
stored, subsequently coupled out and measured optically,
as shown in Fig. 1. Other proposals for entangling quantum
optomechanical systems have been suggested [10,11,29—
33]. However, these do not give a way to control the lifetime
of quantum entanglement and spatial separation of massive
oscillators, combined with an efficient intracavity state
transfer mechanism—as has recently been exploited exper-
imentally to demonstrate a coherent state memory [9,34].
These requirements appear essential to a test of Furry’s
hypothesis.

The entangled source cavity modes a; and a, are
assumed to be initially in a two mode squeezed state,
prepared using the standard technique of nondegenerate
parametric down-conversion. To give a definite model, this
entangled state is initially prepared in a source cavity whose
entanglement is characterized by a squeezing parameter r.
The source cavity has tunable decay rates «(¢), generating
shaped, entangled outputs [35,36]. This approach, using
cavity Q-switching [37], is the simplest conceptually; we
note that other methods involving time-dependent cavity
detunings are also possible [35].

The resulting entangled fields are fed [38—40] into the
quantum optomechanical systems labeled cavity 1 and cavity
2, respectively, assuming identical optomechanical parame-
ters. For simplicity, we linearize the equations of motion for
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an adiabatic [29,30] pulsed optomechanical Hamiltonian
describing these devices [31,41-43], including dissipation
and thermal noise for the cavity and mechanical modes, and
we verify this approach using exact methods. A time
dependent optomechanical interaction g(r) [35] allows the
entangled modes to transfer to and from the mechanical
modes 131 and lA72. The internal mechanical entanglement is
read out via additional red-detuned transfer pulses that enter
the optomechanical cavities after a storage time z, as used in
coherent state transfer experiments [34]. These are shaped
optimally for maximum retrieval efficiency [35,36], with
subsequent measurement of the stored entanglement using
homodyne detection.

Time-dependent coupling and decay.—The optomechan-
ical systems are modeled using the standard single mode
theory [44-46], following techniques explained in previous
papers [41]. It is convenient to introduce a dimensionless
time variable, 7 =T .t, relative to the optomechanical
cavity decay rate I'.. To obtain universally valid results
covering a range of different cases, all other times,
frequencies and couplings are given in dimensionless units
with derivatives f = Of /0.

The equations of motion for the source cavity mode
operators a;, a,, are obtained in the absence of thermal
noise, assuming the only losses are due to input-output
coupling with a transmissivity x(z). Using input-output
theory, withinputs a; ;, and outputs a; o, one obtains [47,48]

ar = —k(v)ay + \/2x(7)ag in,
2k(7)ay — ag jn.- (1)
We wish to generate a sech shaped output pulse, a,,
sech(z). This is achieved using a dimensionless mirror

transmissivity defined according to x(z) =[1 + tanh(z)]/2.
We solve for Eq. (1), giving

A out =

ayp = ak(_oo) [h%anh(f)} + Ayacs
a(=o) sech(7) + d/ge. 2)

ak,out = \/Z

The operators a,., d,,. are the source input and output
vacuum noises respectively. The cavities are cascaded, so
diin = Agou> and from the input-output relations, dj o, =

V2d, — dyin- The optomechanical systems satisfy the
standard quantum Langevin equations [41,44] with cavity
detuning éw, mechanical loss y,,, and optomechanical
coupling y, in dimensionless units.

The full nonlinear optomechanical Hamiltonian in
dimensionless terms is Hy; = god'd(b + b"). Assuming
an intense red-detuned pump with éw = ,,, and a result-
ing adiabatic coupling of g = iyE/(1 + iéw), the linear-

A

ized Hamiltonian for cavities 1 and 2 becomes H,;~
i(g*dkbj; - gdibk). Here, d, is a small fluctuation around
the steady state in a frame rotating with detuning éw. We

determine the time dependence of the optomechanical
interaction strengths g(z) of cavities 1 and 2, from previous
work on quantum memories [36].

To understand the mode-matching method, we start by
analyzing the linearized equations without losses in the
mechanical oscillator, and without vacuum noise terms.
These will be included in the full numerical analysis, given
next. At this stage, we have that

C.lk = _dk — lg(T)bk + \/Edk,in’

by = —ig(z)d;. 3)
To find conditions for perfect input coupling, we require
that d,,; =0 in the absence of vacuum noise. Hence
dyin = V/2dy, leading to dy = dy — ig(7)by. If we further
assume b(—o0) = 0, again neglecting vacuum noise, then it
follows that —ig(z) = by/d,, giving

(dy + ighy)/dy = di/dy — (B7)/2d}) = 1. (4)

Now we note that d; = a(—o0)sech(z)/2, and solving
Eq. (4) gives us by =ia(—o0)[l + tanh(z)]/2. From
—ig(t) = by/d,, we obtain the input modulation require-
ment of g(z) = —sech(z — 7;), where 7, is the peak trans-
mission of the input. The output modulation is identical
apart from a shifted time origin, from the symmetry of the
input-output relations under interchange of the input and
output terms. The pulse protocol is shown in Fig. 2.
Output modes Al , Az.—ln order to ensure the entangle-
ment is stored in the mechanical, not the optical, mode, we
suppose there is a separation of time scales with a relatively
long storage time of 7, > 1, so that any optical excitation
and entanglement has decayed. We also assume that the
mechanical dissipation rate y,, is small during the storage
time, i.e. y,,7, < 1. Detecting the stored entanglement
requires an output measurement on temporal modes Ak =

A

[, u(?)doy(z')d7’ such that [Ag, A} =1 [31]. We can
then observe entanglement between A; and A, on a scale
comparable with the initial entanglement between &; and aj.
Choosing the output pulse to be an identical shape to the input,
so that @ o, o sech(r), we have u;(7) = u(r) = Nsech(z).
This leads to a normalization of
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FIG. 2. Temporal behavior of the input field a;,, the output field
Ay the mechanical state b, and the coupling strength ¢(7).
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N=1/4] _oo sech(z)%dr = \/; (5)

The normalization constant for a restricted time domain can
also be found, which leads to minor corrections.

Wigner representation and stochastic equations.—There
is thermal noise in the mechanical mode due to the interaction
with its reservoir. In order to simulate these effects, and to
include vacuum noise terms rigorously, it is useful to
introduce a quantum phase-space representation of the system
density matrix [49]. Initially we choose the Wigner distribu-
tion, which for the initial entangled state is given by [50]

4 a > l|a_|?
Wiay.am) = e [-2(SE )] 9

e

Here a, = (a; &+ a3)/+/2 and r is the squeezing parameter
that characterizes the degree of entanglement. Since this has a
Gaussian probability distribution, one can readily simulate the
experimental protocol by generating Gaussian noise vectors

T, & with unit variance, defining a.=[EF+i&fx
e*"/2 and then obtaining mode amplitudes a; =
(a; +a_)/v2and @, = (@ — a)/+/2. It is also possible
to use a positive-P representation [51], which allows an exact
simulation of the full nonlinear Hamiltonian H;, with no
approximations apart from sampling [41]. For reasons of
space, the full analysis will be given elsewhere, but the results
are plotted here.

Quantum dynamical time evolution now follows an
approximate stochastic equation, after truncation of higher
order terms in a (1/N) expansion for input photon number
N. Taking into account the cascaded input-output relations,
the coupled equations describing time evolution of the
Wigner amplitudes for the entangled source cavities ay,
optical cavities d;, and mechanical modes f; are given, for
k=1, 2, by

a = —k(7)ay + \/2k(7)&,
S = =0, — ig(r)By + 2v/k(t)ey — V28,

B = ~vubi = i9(0)8k + /20 gy + Dérire (7)

Here 71y, , = 1/[exp (Al .w,,/kgT) — 1] is the average pho-
non number in the mechanical bath, and &; are complex
Gaussian noises with variances that correspond to the “half-
quanta" occupations of symmetric Wigner vacuum correla-
tions, (£(7)& (7)) = 6u6(z — 7). Using the input-output
relations again, we obtain the expression &y oy = V26,—

2k(7)ay + &. The output modes used for detecting
entanglement are then

Tmﬂx
Ak,out = M(T - 72)
Ti47,/2

x ([V28 = v/ 2x(x)a] + &) de. (8)
Note that the time integration for the output modes only starts
after the first transfer pulse has been completed.

Experimental parameters.—We assume that the optical
modes of cavities 1 and 2 are initially in a vacuum state.
The source cavity and cavities 1 and 2 are connected by a
perfect, lossless waveguide.

Our simulations used experimental parameter values
very similar to the optomechanical experiment values
reported by Chan et al. [2]. The mechanical modes have
an initial occupation of n,, ,(0) = 0.7, corresponding to a
reservoir temperature of 200 mK. The cavity decay rate is
I'./27 = 0.26 GHz. Relative to this time scale, the
mechanical oscillator has dimensionless resonance fre-
quency w,,/2x = 14.23, with a mechanical dissipation rate
of y,,/2m = 1.59 x 1073 and an optomechanical coupling
strength of y,/27 = 3.5 x 1073, which justifies the lineari-
zation [29,30] and adiabatic approximations [31].

The time dependent source cavity decay rate that shapes
the entangled modes is given by k(7) = 1 [1 + tanh (7 — 7,)],
while the effective coupling strength is

B —\/EM(T - Tl),
9(v) = { —\/Eu(r - 1),

where 7 = 8.17 and 7, = 7| + 7, are the dimensionless
times when the storing and reading pulses peak, and
Tmax = 271 + 74, while 7, is the dimensionless time between
the peaks of the storage and readout pulses. It is also the
storage time of the entangled state in the mechanical mode, as
illustrated in Fig. 2.

Entanglement criterion.—We use the phase- and gain-
optimized product signature as an entanglement criterion
[52], defined as

VO<z<7+75

©)

TT
VT[ +7§T§Tmaxv

4A(X, — GX9)A(P, + GPY)
(14+G?)

where X§ = 1[e A o + €A} ], P) = X072 and G
is an adjustable real constant. In particular, X; = Xg, P, =
PY are the usual phase and amplitude quadratures. We
minimize AL, with respect to the gain G and phase €
simultaneously. When inequality (10) holds, the optimized
value of AL, characterizes the degree of quantum entan-
glement between the modes [53].

We compute AL, in Eq. (10) as a function of thermal
reservoir occupation number for a set of different storage
times and a fixed squeezing parameter. To give an approxi-
mate analytic prediction, we consider only the degradation of
the entanglement during its storage period in the mechanical
oscillators. Using results described in [54], we predict an

entanglement value of

Ay = e 4 (1= 215 ) (14 2ig). (1)

APf

ent —

<1, (10)

Figure 3 shows the predicted entanglement results for
squeezing parameter = 1 and three different storage times
7, = 16.3, 40.8, 81.7, corresponding to 10, 25, and 50 ns,
respectively. The dotted and solid lines indicate simulation
results and dashed lines theoretical predictions.
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FIG. 3. Entanglement as a function of temperature for three
different storage times. The initial squeezing parameter is r = 1,
characterizing the degree of entanglement in the source cavity, while
Acpo = 0.135 is the initial value of entanglement. Sloping dashed
lines represent the analytic approximation, solid lines the exact
positive- P simulation results including the full nonlinearity, and the
dotted lines are the truncated Wigner approximate simulations.

The truncated Wigner simulation results in the dotted lines
were obtained by solving Egs. (7) with a stochastic fourth
order Runge-Kutta algorithm, 3000 time steps, and 2 x 108
samples, using open-source software [55]. They are in good
agreement with our analytic predictions. Results for an exact
positive-P simulation of the full nonlinear optomechanical
model, with neither adiabatic nor linearization approxima-
tions, are also given (solid line of Fig. 3). These used 10* time
steps and give essentially the same results, showing that
quantum predictions for this system can be calculated
quantitatively. A larger initial entanglement in the source
cavity and a shorter storage time gives even better output
temporal mode entanglement. Figure 4 gives a three-
dimensional representation of the truncated Wigner results
against storage time and temperature, showing how higher
mechanical temperatures more rapidly degrade entanglement.

Quantum fidelity.—We consider the quantum fidelity
measure F = (y|p|y), where |y) is the two mode squeezed
state and p is the density operator describing the temporal
output modes. The fidelity quantifies the efficiency of our
entanglement protocol as the entanglement in output tem-
poral modes rely on successful entangled state transfer from
the source cavity. In the Wigner representation [56,57],

f—;zz/Ww(al,az)wp(al,az)d2a1d2a2. (12)

From the quantum simulations, we obtain sampled temporal
output modes from the Wigner function W,. The quantum
fidelity F is then computed using

71'2 . .
D Wy (AL g Ad ) (13)

sample

F=

where A;'(, out 18 the 7th sample of temporal output mode A;
and Ngmple 1s the total number of samples taken.

100
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FIG. 4. Entanglement as a function of temperature and storage
time. Results are obtained using the truncated Wigner method;
other parameters as in Fig. 3.

The quantum fidelity in Eq. (13) is also computed as a
function of reservoir temperature and storage time, showing
the steep drop in fidelity as storage time is increased.
Comparing plots in Figs. 4 and 5 shows that a fidelity F of
at least about 0.3 is needed for entangled output modes.

EPR steering.—In addition to entanglement, we also
analyze the stronger, asymmetric nonlocality signature
known as the EPR steering that links directly to the
EPR paradox [15,25,58]. We use the continuous variable
(CV) signature for steering of system 1 by system 2 [25]

EPR;, = 4A(X, — GX))A(P, + GP}) <1, (14)

with X, P as previously and an optimized gain G. Figure 6
shows the predicted results for EPR steering. The solid
lines indicate simulation results and the dashed lines give
analytic predictions. The analytic predictions were obtained
analogously to the entanglement predictions. Using the
results described in [54], we obtain

2ab(1 = b)c + b2 + (1 — b)?
ab+ (1 =b)c ’

EPR,p, = (15)

where a = cosh (2r),b=e 2% ¢ = (1+ 2iiy,,,). Because
of the symmetric setup, EPR;, and EPR;|; are equal in
magnitude. Both approximate truncated Wigner and exact

1.0 _ Bemo = 0133 .
— 71,=817

0.8 b
— 7,=16.3

0.6

SN

04r

0.2

0.0 1 1

50 100 150 200
ﬁth,m
FIG. 5. Fidelity F as a function of the thermal bath occupation

number and storage time; other parameters are as in Fig. 4.
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FIG. 6. EPR steering as a function of the thermal bath
occupation number for three different storage times; other
parameters are as in Fig. 3.

positive-P results were obtained here, giving excellent agree-
ment with the analytic theory for these parameter values.

Conclusions.—In summary, our results show that a
synchronous pulsed experiment can, in principle, transfer,
store, and read out macroscopic entanglement of two
mechanical oscillators with nearly 100% efficiency under
ideal conditions. Because of finite temperature effects and
damping, this effect is degraded in a predictable way. We
calculate the quantitative effects of known decoherence on
this proposed experiment. The experimental objectives
would be to demonstrate entanglement transfer, and hence
place a bound on any decoherence rate caused by the
oscillator separation, to test the validity of models that
implement Furry’s hypothesis.
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