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The phase transition responsible for axion dark matter (DM) production can create large amplitude
isocurvature perturbations, which collapse into dense objects known as axion miniclusters. We use
microlensing data from the EROS survey and from recent observations with the Subaru Hyper Suprime
Cam to place constraints on the minicluster scenario. We compute the microlensing event rate for
miniclusters, treating them as spatially extended objects. Using the published bounds on the number of
microlensing events, we bound the fraction of DM collapsed into miniclusters fMC. For an axion with
temperature-dependent mass consistent with the QCD axion, we find fMC < 0.083ðma=100 μeVÞ0.12,
which represents the first observational constraint on the minicluster fraction. We forecast that a high-
efficiency observation of around ten nights with Subaru would be sufficient to constrain fMC ≲ 0.004 over
the entire QCD axion mass range. We make various approximations to derive these constraints, and
dedicated analyses by the observing teams of EROS and Subaru are necessary to confirm our results.
If accurate theoretical predictions for fMC can be made in the future, then microlensing can be used to
exclude or discover the QCD axion. Further details of our computations are presented in a companion paper
[M. Fairbairn, D. J. E. Marsh, J. Quevillon, and S. Rozier (to be published)].
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The QCD axion [1–6] remains one of the most well-
motivated and viable candidates for particle dark matter
(DM). The axion is a pseudo-Nambu-Goldstone boson of a
spontaneously broken global Uð1Þ symmetry, known as a
Peccei-Quinn (PQ) symmetry [7]. PQ symmetry breaking
occurs when the temperature of the Universe drops below
the symmetry breaking scale TPQ ∼ fa. The cosmology of
the axion is determined by the cosmic epoch, during which,
symmetry breaking occurs [8,9]. If the PQ symmetry is
broken after smooth cosmic initial conditions are estab-
lished (by, for example, inflation), then topological defects
and large amplitude axion field fluctuations will be present
on scales of order the horizon size at symmetry breaking
[10–12]. For models of inflation, the observational bound
on the cosmic microwave background tensor to scalar ratio
of rT ≤ 0.07 [13] implies that this scenario for symmetry
breaking is only possible for fa ≲ 1013 GeV.
The Kibble mechanism [14] smooths the axion field on

the horizon scale until such a time that the axion mass
becomes cosmically relevant: 3HðT0Þ ≈maðT0Þ, where
HðTÞ is the Hubble rate, and we have allowed temperature
dependence of the axion mass. At this epoch, the topo-
logical defects decay (we consider only the case with the
domain wall number equal to unity) [15], and the axion
field is left with large amplitude isocurvature fluctuations
on the horizon scale.
Once cosmological structure begins to grow at matter-

radiation equality, the isocurvature perturbations are con-
verted into curvature perturbations and promptly collapse
into dense bound structures of DM known as axion
miniclusters [10,16–21]. The characteristic minicluster
mass M0 is given by the total mass of DM contained
within the horizon at the epoch T0

M0 ¼ ρ̄a
4

3
π

�
π

aðT0ÞHðT0Þ
�

3

; ð1Þ
where a is the cosmic scale factor of the Friedmann-
Lemaître-Robertson-Walker metric, and we have consid-
ered a spherical patch of radius R ¼ π=k0 for comoving
wave vector k0 ¼ aðT0ÞHðT0Þ (here and throughout
ℏ ¼ c ¼ 1). The definition of M0 depends upon the
filtering of the mass function [22]. Ours differs from others
in the literature that take a cubic volume ∼k−30 .
The temperature T0 sets the time when the axion field

goes from having an equation of state w ¼ −1 to w ¼ 0 and
therefore, depends on the temperature evolution of the
axion mass maðTÞ ¼ ma;0ðT=TcÞ−n, with maðT < TcÞ ¼
ma;0 ≡ma. The index n parameterizes the sharpness of the
phase transition and the critical temperature Tc ≈

ffiffiffiffiffiffiffiffiffiffiffi
mafa

p
(for the QCD axion, Tc ≈ ΛQCD ≈ 200 MeV ≈ 2.5

ffiffiffiffiffiffiffiffiffiffiffi
mafa

p
;

the case Tc ≫
ffiffiffiffiffiffiffiffiffiffiffi
mafa

p
occurs for some axionlike particles

[23] and is equivalent to n ¼ 0). This phase transition also
determines the axion DM density [24–26]. Fixing the DM
density Ωch2 ¼ 0.12 [27] determines an n-dependent rela-
tionship between ma and fa such that M0 ¼ M0ðma; nÞ.
Following the standard computation for the axion DM

density [28] and accounting for uncertainties due to
anharmonicities in the axion potential and the decay of
topological defects [15], we compute M0ðma; nÞ for vari-
ous n (see Fig. 1). As a representative of the QCD axion,
we take n ≈ 3.34 from the “interacting instanton liquid”
model for the QCD topological susceptibility [28], which
is consistent with the results from lattice simulations
(n ≈ 3.55� 0.30 [29,30]).
After their initial formation, miniclusters of mass M0

undergo hierarchical structure formation and collapse into
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larger “minicluster halos” (MCHs) as the substructurewithin
larger galactic halos. Miniclusters collapse much earlier and
on different scales than galactic halos, and so we treat these
two periods of structure formation independently.
Hierarchical structure formation can be computed follow-

ing the Press-Schechter [31] approach, as shown in Fig. 2.
The slope of the MCH mass function is fixed by the (cut
white noise) initial conditions, giving a mass variance
σ2ðMÞ ∝ M−1 for M ≳M0, constant M ≲M0. The maxi-
mum MCH mass is determined by linear growth and the
Gaussian cutoff for crossing the collapse threshold, dropping
to one percent atM ≈ 5 × 106M0. The minimum axion halo
mass is seen in simulations [20,32,33] and is determined by a
combination of the initial conditions (Kibble mechanism)
and the axion Jeans scale or de Broglie wavelength [34,35]
and is cutoff dependent. MCHs with M ≪ M0, however,
play little role in microlensing for the QCD axion for the
surveys considered.
We normalize the substructure mass function to

fMC ¼ 1

Mhost

Z
M

dn
dM

dM ð2Þ

for host galaxy mass Mhost and minicluster fraction fMC.
The presence of fMC as a free parameter accounts for the
fact that, due to the axion population from topological
defect decay and the effects of, e.g., tidal stripping [36],
only a fraction of axions end up bound in miniclusters.
In some cases, miniclusters and MCHs can be massive

enough and dense enough to impact gravitational micro-
lensing. Thus, searches for axion miniclusters are related to
searches for nonparticle DM candidates, such as massive
compact halo objects (MACHOs) [37,38] and primordial
black holes (PBHs, see, e.g., Refs [39,40]).

We compute the lensing signal for miniclusters, treating
them as extended objects. Miniclusters can remain isolated
from each other as they join larger haloes, form dense
MCHs, or become disrupted into diffuse MCHs. We
consider all of these possibilities below and in more detail
in Ref. [22]. The true model of structure formation with
miniclusters must be determined by simulations; our
models bracket the possibilities.
We computed the gravitational microlensing signal from

axion miniclusters and MCHs for the EROS survey of the
large magellanic cloud (LMC) [41] and for the Subaru
Hyper Suprime-Cam (HSC) survey of Andromeda (M31)
[40]. EROS has a high microlensing efficiency for time
scales between one day and 1000 days, while HSC
observations have high efficiency for time scales between
two minutes and seven hours. Thus, the two surveys probe
different characteristic lens masses [38]. We make various
approximations in order to handle the constraints from
these surveys in a simple manner and emphasize that a
dedicated analysis by observers is desirable.
Microlensing with Miniclusters.—A key quantity in

gravitational microlensing is the Einstein radius

REðx;MÞ ¼ 2½GMxð1 − xÞds�1=2; ð3Þ
where M is the lens mass, ds is the distance from the
observer to the source, and x ¼ d=ds, where d is the
distance from the observer to the lens. For a pointlike lens,
the Einstein radius defines the shape of the “microlensing
tube” [38]. This is the volume within which a lens must
pass for the lensing amplification A to exceed 1.34, A ¼
1.34 being the threshold applied to the lightcurves in
Refs. [40,41].
Miniclusters are extended objects with scale radius

determined by the characteristic density. The characteristic

FIG. 1. The characteristic minicluster mass: we plot M0 as a
function of the axion mass ma for different temperature evolu-
tions of the axion mass parameterized by index n. Solid lines
show the most realistic assumptions about the relic density, while
dashed lines relax those assumptions slightly. When the axion
mass is temperature independent (n ¼ 0), the two scenarios are
equivalent for minicluster mass. Lines terminate at a lower bound
on ma, set by the DM relic abundance and the constraint
fa ≲ 1013 GeV for minicluster production.

FIG. 2. Parametrization of the minicluster mass function. The
mass function can be well fit by two cutoffs and a single slope
parameter M−1=2, derived from white noise initial conditions cut
at M0. For the numerical calculation (solid line), the normaliza-
tion is fixed to be per unit volume. For the substructure mass
function, we normalize by fMC. For illustration, we take ma ¼
10−7 eV and n ¼ 0 for the axion mass temperature dependence.
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density of a minicluster found in numerical simulations is
[16–19]

ρc ¼ 140δ3ð1þ δÞρað1þ zeqÞ3; ð4Þ
where ρa is the cosmic axion DM density, and zeq is the
redshift of matter radiation equality (these and the
other cosmological parameters we use are determined by
the cosmic microwave background anisotropies [27]).
The parameter δ is the characteristic overdensity of a
minicluster at the time of formation. In numerical simu-
lations, miniclusters are observed to have a distribution of
values for δ given by dn=dδ, which we take from the
numerical results of Fig. 2 in Ref. [19], and which we fit
with a Pearson-VII distribution to extend to large δ.
Above the axion de Broglie wavelength (which can be

safely neglected in the density profiles for microlensing
[22]), we treat the density profiles of miniclusters/MCH as
the Navarro-Frenk-White (NFW) [42] type. Equation (4)
defines the NFW characteristic density ρðrÞ ¼ ρc=½ðr=rsÞ
ð1þ r=rsÞ2�, with the scale radius defined from ρc after
fixing the total mass M of the minicluster/MCH and
assuming the profiles extends to 100 rs. An alternative
minicluster/MCH density profile fixes ρc as the core density
and the radial dependence as r−9=4 from self-similar infall
[43] and is explored in Ref. [22].
We integrate the three dimensional density profile along

the line of sight towards the center of the halo to obtain a
surface density for lensing. We then calculate the magni-
fication for an axisymmetric mass distribution with impact
parameter l from the line of sight

A ¼ ½ð1 − BÞð1þ B − CÞ�−1;

C ¼ 1

Σcπl
dMðlÞ
dl

; B ¼ MðlÞ
Σcπl2

; Σc ¼
1

4πGdsxð1 − xÞ :

ð5Þ
In this way, we compute the shape of the microlensing tube
given by the value of l corresponding to a magnification of
A ¼ 1.34 for a minicluster defined by ðM; δÞ.
From our numerical lensing calculations, we find that the

shape of the microlensing tube is still reasonably well
described by REðx;MÞ, but with a rescaling factor R that
depends on δ and M [22] such that the minicluster micro-
lensing tube is given by

RMCðx;M; δÞ ¼ Rðδ;MÞREðx;MÞ: ð6Þ

When a mincluster/MCH is diffuse, the tube is smaller.
There is a minimum value of δ, below which, there is
no value of impact parameter l for which A ≥ 1.34,
i.e., Rðδ < δminÞ ¼ 0, with δmin ¼ δminðMÞ given approx-
imately by rs=RE > 1. This reduces considerably the
expected number of microlensing events for miniclusters
compared to point masses (MACHOs, PBHs). For δ ≫ δmin,
the limiting behavior is that of a point mass, R → 1.

The rate of microlensing events of duration t̂ for
miniclusters is

dΓ
dt̂

¼ 32ds
t̂4v2c

Z
∞

0

�
dn
dδ

Z
∞

0

�
dn
dM

Z
1

0

ρDMR4
MCe

−Qdx

�
dM

�
dδ;

ð7Þ
where vc ≈ 220 km s−1 is the local circular speed, ρDM is
the line of sight DM density to the source, and we have
suppressed the dependencies on, x, M, and δ of the
integrand. The factor e−Q, withQ ¼ 4R2

MC=ðt̂2v2cÞ, emerges
by approximating the Bessel function in the lensing
integral [38,44].
The EROS survey observed the LMC at a distance

dLMC ¼ 50 kpc, considering only lensing events of LMC
stars by DM in the Milky Way (MW). EROS models the
MW as a cored isothermal sphere

ρMW;EROSðrÞ ¼ ρ0
R2
c þ R2

⊕

R2
c þ r2

; ð8Þ

where R⊕ ¼ 8.5 kpc is radial distance of the Earth in the
MW, Rc ¼ 5 kpc, and ρ0 ¼ 0.0079 M⊙pc−3. A miniclus-
ter at distance d from Earth on the line of sight to the
LMC has radial coordinate in the MW r2MWðdÞ ¼
R2
⊕ − 2R⊕d cos lLMC cos bLMC þ d2, where ðl; bÞ are the

measured Galactic coordinates.
HSC observed Andromeda (M31). For such an obser-

vation, one must consider the lensing of stars in M31 by
both DM in the MWand in M31 itself, and the event rate is
given by dΓ ¼ dΓMW þ dΓM31. HSC models both the MW
and M31 as NFW profiles with halo parameters from
Ref. [45], quoted in Ref. [40]. M31 is at a distance
dM31 ¼ 770 kpc. A minicluster in the MW at distance d
from Earth on the line of sight to M31 has radial coordinate
rMWðdÞ2 ¼ R2

⊕ − 2R⊕d cos lM31 cos bM31 þ d2, while a
minicluster in M31 at a distance d from Earth has radial
coordinate in M31 rM31ðdÞ ≈ dM31 − d. Note we have not
taken into account the reduction in sensitivity below about
10−9 M⊙ due to the Einstein radius subtending an angle
less than that of the diameter of the source star. This could
reduce our sensitivity in the most interesting region by a
factor of a few [40].
The number of expected microlensing events is

Nexp ¼ E
Z

dt̂
dΓ
dt̂

ϵðt̂Þ; ð9Þ

where E is the total exposure in star years, and ϵðt̂Þ is the
microlensing efficiency of the survey. EROS gives the
microlensing efficiency in Fig. 11 of Ref. [41], which
we digitize. The exposure is as EEROS ¼ 3.68 × 107 star
years [41].
HSC uses a Monte Carlo technique to determine the

efficiency in each region of the observing field and sepa-
rately, for differentmagnitudes of stars. Reproducing such an
analysis is beyond the scope of our work, and so we
make a series of approximations to obtain HSC constraints.
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We model the efficiency from Fig. 14 of Ref. [40] as a step
function, with ϵ ¼ 0.5 between the sampling of two minutes
and the observing time of seven hours. We normalize the
exposure to reproduce the bound on the PBH fraction (e.g.,
Fig. 21 of Ref. [40]) using our methods.
Results.—We show the expected number of microlensing

events in the minicluster scenario as a function of M0 in
Fig. 3 for HSC and EROS, with fMC ¼ 1. The number of
events in HSC is far larger than for EROS due to the huge
volume of DM between Earth and M31, leading to a larger
optical depth to microlensing for HSC [40]. To show the
effects of our modeling, we show four different calculations
of Nexp . for HSC.
In the first, we compute the event rate for PBHs (i.e.,

pointlike object) of fixed massM0 (i.e., Dirac-delta-function
mass distribution) to normalize the exposure and efficiency.
We then compute the case of isolated miniclusters, with

density profiles determined by dn=dδ. This reduces the
number of events by a factor of Oð102Þ due to the require-
ment of large δ such that R > 0. We consider this most
conservative: miniclusters are too dense to suffer much
disruption on mergers, and MCHs are likely to be a “plum
pudding” of M0 objects. In this case, for the HSC cadence
and QCD axion, the modulating role of the MCH mass
function is not relevant.
The dense MCH case includes, in addition, the effects of

dn=dM.Amicrolensing survey is sensitive toobjects of fixed
mass M. The mass function spreads the MCHs to M > M0

(with more total mass at largerM), shifting the centralM0 to
smaller values. The density profiles of the dense MCHs are
also computed using dn=dδ; i.e., mergers formingMCHs are
assumed to preserve the distribution of halo concentrations.
Finally, the diffuse minicluster case uses dn=dM but

assumes that all MCHs with M outside a small window
nearM0 have too low a density for microlensing. The cut in
dn=dM reduces the number of events. This is the most
pessimistic model, corresponding to an effective reduction in
fMC caused by mergers.

Taking both EROS and HSC to have observed zero
microlensing candidates, the Poisson statistics 95% C.L.
limit on the number of expected events is Nexp ≤ 3 [40,41].
Using this limit, we find the constraints on fMC as a
function of axion massma, presented in Fig. 4. We find that
EROS is unable to place a bound on fMC < 1.
HSC, on the other hand, does. The shaded band

shows the allowed mass for the QCD axion fixed by
ma ¼ 6.6 μeVð1012 GeV=faÞ [1,2] and the relic density
50 μeV≲ma ≲ 200 μeV [46]. The solid lines show the
HSC constraint: where the n ¼ 3.34 line intersects the
shaded band, fMC is bounded for the QCD axion, and we
find fMC < 0.083ðma=100 μeVÞ0.12 in the isolated mini-
clusters case.
These results could be improved, as shown in

Fig. 4 (inset), where the magenta line shows a hypothetical
improved observation by HSC, extending to ten nights with
an efficiency ϵ ∼ 1, leading to a forecast bound of fMC ≲
0.004 for the QCD axion in the isolated miniclusters case.
The improved observation would also be able to bound
fMC ≲ 0.1 in the more pessimistic dense MCH scenario.
We advocate a dedicated analysis of the HSC microlensing
data to place more rigorous bounds on fMC than we have
approximated and for a longer microlensing survey in order
to improve those bounds further. Reference [22] includes the
necessary light curves. Reference [22] also discusses various
theoretical uncertainties and modeling that can give small
shifts in the constraints. The largest uncertainty comes from
our simplified modeling of the lensing efficiency. We are
confident, however, that a more thorough analysis by the
observing teams will show that HSC, and microlensing in
general, is now a powerful tool to constrain the QCD axion.
In this Letter, we have used microlensing to place the first

observational bounds on the DM axion minicluster fraction

FIG. 3. Expected microlensing events: here, we assume that all
the DM is composed of miniclusters on small scales. Lines show
the effects of our modeling of the minicluster mass function and
density profile for HSC and the EROS survey.

FIG. 4. Limits on the fraction of DM collapsed intominiclusters:
themodel adopted is for “isolatedminiclusters,”whichwe consider
the most realistic. The shaded region shows the allowed mass
for the QCD axion in this scenario. Where the n ¼ 3.34 lines
intersect this region, fMC is constrained for the QCD axion. The
magenta (blue) line in the inset shows a hypothetical improved
observation by HSC ten nights, with an efficiency ϵ ∼ 1 in the case
of isolated miniclusters (dense MHCs).
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fMC. This quantity is poorly understood theoretically and
naively, could be of order unity. If the minicluster fraction
were unity, then axion DM detection in the lab [47] in this
mass range, e.g., by “MADMAX” [48],wouldbemuchmore
difficult due to the small probability of an encounter between
the Earth and a minicluster. Constraining fMC observatio-
nally is an important task.
If axions are ever detected directly in the lab, then tidal

stripping of miniclusters allows fMC to be measured from
the phase-space distribution [36,43]. Independently of fMC,
axions in the mass range accessible to microlensing can be
detected via the force they mediate using the proposed
experiment “ARIADNE” [49].
If accurate theoretical predictions for fMC are made

through numerical simulation, then our results and future
microlensing surveys could be used to exclude the exist-
ence of the QCD axion or indeed discover evidence for it.
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