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A paramount topic in quantum foundations, rooted in the study of the Einstein-Podolsky-Rosen (EPR)
paradox andBell inequalities, is that of characterizing quantum theory in terms of the spacelike correlations it
allows. Here, we show that to focus only on spacelike correlations is not enough:we explicitly construct a toy
model theory that, while not contradicting classical and quantum theories at the level of spacelike
correlations, still displays an anomalous behavior in its timelike correlations.We call this anomaly, quantified
in terms of a specific communication game, the “hypersignaling” phenomena. We hence conclude that the
“principle of quantumness,” if it exists, cannot be found in spacelike correlations alone: nontrivial constraints
need to be imposed also on timelike correlations, in order to exclude hypersignaling theories.
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One of the main tenets in modern physics is that if two
spacelike separated events are correlated, then such correla-
tions must not carry any information [1]. This assum-
ption, constituting the so-called no-signaling principle,
was the starting point used by Bell [2] to quantify and
compare spacelike correlations of different theories on even
grounds—an idea of vital importance for his argument about
the Einstein-Podolsky-Rosen (EPR) paradox [3] and the
derivation of his famous inequality. Subsequently, due to
seminal works by Tsirelson (Cirel’son) [4] and Popescu and
Rohrlich [5], it became clear that the no-signaling principle
alone is not enough to characterize “physical” spacelike
correlations: nonsignaling spacelike correlations allowed by
quantum theory form a strict subset within the set of all
nonsignaling correlations [6].
A natural question is then to try to identify additional

principles that, together with the no-signaling principle,
may be able to rule out all superquantum nonsignaling
correlations at once. Various ideas have been proposed,
ranging from complexity theory, e.g., the collapse of the
complexity tower [7] to information theory, e.g., the
information causality principle [8]. However, none of these
has been able to characterize the quantum-superquantum
boundary in full. In particular, an outstanding open ques-
tion is whether quantum theory can be characterized in
terms of the spacelike correlations it allows [6].
In this Letter, we show that this cannot be done: any

approach to characterize quantum theory based only on
spacelike correlations is necessarily incomplete unless it
also takes into account timelike correlations as well. Our
approach, which is completely unrelated to the study of
temporal correlations in the manner of Leggett and Garg
[9–12], considers the elementary resource of noiseless
communication and the input-output correlations that can
be so established. By analogy with the no-signaling

principle, we operationally introduce what we call the
“no-hypersignaling principle,” which roughly states that
any input-output correlation that can be obtained by
transmitting a composite system should also be obtainable
by independently transmitting its constituents. As obvious
as this may look (it is indeed so in classical and quantum
theories), the fact that quantum theory obeys the no-
hypersignaling principle (as we define it) is in fact a highly
nontrivial consequence of a recent result by Frenkel and
Weiner [13]. We also notice that the no-hypersignaling
principle is not related with phenomena such as super-
additivity of capacities of noisy quantum channels [14].
We then construct a toy model theory, which violates the

no-hypersignaling principle, but only possesses classical
spacelike correlations. As such, this theory (and other
analogous theories) would go undetected in any test
involving only spacelike correlations, despite displaying
the anomalous effect of hypersignaling. On the technical
side, our model is closely related to the standard imple-
mentation [15–17] of Popescu–Rohrlich [5] superquantum
nonsignaling spacelike correlations (or “PR boxes,” for
short). However, while the PR-box model theory relies on
entangled states to outperform quantum spacelike correla-
tions, our hypersignaling model relies on entangled mea-
surements to outperform quantum timelike correlations.
Nonetheless, since in our model only separable states are
available, no superquantum spacelike correlation can be
obtained. Therefore, while the standard PR-box model
theory can be ruled out on the basis of its superquantum
spacelike correlations, the model proposed here can only be
ruled out by the principle of no-hypersignaling.
The no-hypersignaling principle.—In general, the starting

point of a physical theory is to define its elementary systems.
In generalized probabilistic theories (see Supplemental
Material [18], and Refs. [19,20]), a system S ¼ ðS; EÞ is

PRL 119, 020401 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
14 JULY 2017

0031-9007=17=119(2)=020401(7) 020401-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevLett.119.020401
https://doi.org/10.1103/PhysRevLett.119.020401
https://doi.org/10.1103/PhysRevLett.119.020401
https://doi.org/10.1103/PhysRevLett.119.020401


typically defined by giving a set of statesS and a set of effects
E, representing, respectively, the preparations and the obser-
vations of the system. States can be arranged to form
ensembles fΩ0;Ω1; � � �g, and effects can be arranged to form
measurementsfE0; E1; � � �g. The theorymust also comprise a
rule for computing the conditional probability of any effect on
any state. For example, in quantum theory, a system is
associated with a d-dimensional Hilbert space H, states,
and effects are represented by positive semidefinite operators
on H, and conditional probabilities are given by the Born
(trace) rule. The theory must also include a set of trans-
formations mapping states into states (or effects into effects):
in the case of quantum theory, this is the set of quantum
channels (i.e., completely positive and trace preserving
linear maps).
Given an elementary system, an important role is played

by its dimension [21], which is expected to depend solely
on the set of states S and effects E. Since one usually
assumes that convex mixtures of states and effects can
always be considered (following the idea that the randomi-
zation of different experimental setups is in itself another
valid experiment), by linear extension, it is natural to
introduce the real vector spaces SR and ER, generated
by real linear combinations of elements of S and E,
respectively. Notice that in typical situations, ER coincides
with the set of linear functionals on SR. One soon arrives at
the following definition:
Definition 1. (linear dimension) The linear dimension

of a system S, denoted by lðSÞ, is defined as the dimension
of the real vector space SR (or ER, which is the same in the
finite dimensional case considered in this work).
The linear dimension of a classical system with d

extremal states is equal to d, whereas the linear dimension
of a quantum system associated with a d-dimensional
Hilbert space is d2. For convenience, we denote a d-
dimensional classical system by Cd and a quantum system
with d-dimensional Hilbert space byQd so that, in formula,
lðCdÞ ¼ d and lðQdÞ ¼ d2.
There are various ways proposed to make sense of this

discrepancy: a typical solution is to define an “operational”
dimension as the maximum number of states that can be
distinguished in a single measurement, see, e.g., Ref. [22].
In this way, even though the linear dimension of a quantum
system is d2, the operational dimension turns out to be d,
thus matching the dimension of the underlying Hilbert
space. In what follows, we introduce an alternative opera-
tional definition of dimension, which is both widely
applicable and is independent of any arbitrarily chosen
task, such as perfect state discrimination.
In order to make our analysis more concrete, we need to

introduce some notation. Given two finite alphabets X ¼
fxg and Y ¼ fyg containing m and n letters, respectively,
let us consider the set of all m-input and n-output condi-
tional probability distributions pyjx that can be generated by
transmitting one elementary system S, when free shared

randomness between sender and receiver is allowed. With
this, we mean that the input x can be “encoded” on some

ensemble fΩðλÞ
x ∶x ∈ Xg while the output letter y is

“decoded” whenever the corresponding outcome is

obtained in some measurement fEðλÞ
y ∶y ∈ Yg, where λ

parametrizes the shared random variable. We denote the
convex set of all such correlations by Pm→n

S . For example,
Pm→n

Cd
is the set of all m-input and n-output conditional

probability distributions that can be obtained by means of a
d-dimensional classical noiseless channel and shared ran-
dom data. Equivalently, Pm→n

Cd
can be characterized as the

polytope whose vertices are exactly all those pyjx with
either null or unit entries and such that py ≔

P
xpyjx ≠ 0

for at most d different values of x.
Crucial in our analysis is a recent result by Frenkel and

Weiner [13], stating that, in the presence of shared classical
randomness, any input-output correlation obtainable with a
d-dimensional quantum system is also obtainable with a d-
dimensional classical system (and vice versa)—in formula,

Pm→n
Cd

¼ Pm→n
Qd

;

for all (finite) values of m and n. We are thus motivated to
introduce the following definition:
Definition 2. (signaling dimension) The signaling dimen-

sion of a system S, denoted by κðSÞ, is defined as the smallest
integer d such that Pm→n

S ⊆ Pm→n
Cd

, for all m and n.
Note that κðSÞ equals the usual dimension, both in

classical and quantum theories, and is thus a natural
candidate for an operational definition of dimension.
Moreover, κðSÞ only depends on the structure of S and
E, without relying on the (arbitrarily made) choice of any
specific protocol such as state discrimination. Also, due to
the already mentioned result of [13], in what follows, we
will simply use the symbolPm→n

d to denote Pm→n
Cd

, since the
fact that the underlying theory is classical or quantum is
immaterial for the problem at hand.
The no-hypersignaling principle is introduced by looking

at how the dimension behaves under composition of
elementary systems. In order to do this, we need the theory
to provide us with a rule for combining multiple elementary
systems into a larger one. For example, in quantum theory,
the composition rule is given by the tensor product of the
underlying Hilbert spaces. For the sake of the present Letter,
we do not need to understand the various possible mech-
anisms with which elementary systems can be composed:
given a set of elementary systems fSkg, we denote their
composition by⊗k Sk. Notice that the tensor product should
here be interpreted only as a symbol denoting composition
and is not necessarily related with the actual tensor product
of vector spaces (the interested reader may refer to Ref. [23]).
However, it is natural to assume that the composition rule

must satisfy some sensible constraints. For example, a first
condition that must be met by any self-consistent theory is
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that any circuit obtained as the composition of systems,
states, effects, and their transformations should produce
non-negative conditional probabilities. An additional con-
dition is that spacelike correlations obey the no-signaling
principle, so that any instantaneous exchange of informa-
tion is forbidden, see Fig. 1. There are still other, more
subtle conditions that can be considered.
For example, Ref. [22] considers the condition of local

tomography. This requires the state of a composite system to
be determined by the statistics of measurements done
independently on its constituents. This principle is not as
obvious as that of no signaling; however, it arguably remains
a sensible requirement for a theory that does not want to be
“too holistic” (namely, the state of any composite systems
should always be locally accessible). The principle of local
tomography is relatedwith the notion of dimension: a theory
is locally tomographic whenever the linear dimension of a
composite system does not exceed the product of the linear
dimensions of its constituents, in formula,

lð⊗k SkÞ ≤
Y
k

lðSkÞ: ð1Þ

In fact, without resorting to truly exotic, ad hoc theories, the
linear dimension of the composite system cannot be strictly
less than the product of the linear dimensions of its
constituents, so the inequality in Eq. (1) can be safely
replaced with the equal sign (see Ref. [22] for further details
on the concept of linear dimension).
The no-hypersignaling principle is the analogue of Eq. (1)

stated for the signaling dimension, rather than the linear
dimension. We thus have the following definition:
Definition 3. (No-hypersignaling principle) A theory is

nonhypersignaling if and only if, for any set of systems

fSkg with signaling dimensions κðSkÞ, the signaling
dimension of the composite system ⊗k Sk satisfies

κð⊗k SkÞ ≤
Y
k

κðSkÞ: ð2Þ

In particular, the no-hypersignaling principle requires
that, given two copies of the same system S with signaling
dimension d, the signaling dimension of S ⊗ S cannot
exceed d2, in formula

Pm→n
S ⊆ Pm→n

d ⇒ Pm→n
S⊗2 ⊆ Pm→n

d2 ;

for all m and n. The situation is depicted in Fig. 2.
Roughly speaking, while the no-signaling principle

prevents spacelike separated parties from communicating,
the no-hypersignaling principle prevents timelike separated
parties from communicating “too much,” see again Fig. 1. It
may help to think that the no-hypersignaling principle
guarantees that the input-output correlations, attainable
when transmitting two elementary systems, do not depend
on whether the systems are actually transmitted in series or
in parallel.
Before proceeding, it will be useful to interpret the no-

hypersignaling principle in terms of a communication
game. To this aim, let us denote a composite system by
S̄ ¼⊗k Sk and by K the product

Q
kκðSkÞ of the local

signaling dimensions. It is therefore a straightforward
application of the hyperplane separation theorem that a
theory is hypersignaling if and only if, for some m
and n, there exists a conditional probability distribution
p ∈ Pm→n

S̄ and an m × n real matrix g, such that

gT · p > max
q∈Pm→n

K

gT · q; ð3Þ

where we use the notation AT · B to indicate the Hilbert-
Schmidt dot product

P
x;yAx;yBx;y ¼ Tr½ATB�. Notice that

the maximization problem in the rhs of Eq. (3) is in closed
form: by linearity the maximum is attained on the vertices

FIG. 1. Spacelike and timelike correlations. Events A and B are
spacelike separated; i.e., information cannot travel from the one
to the other (no-signaling principle). Correspondingly, they can
only share spacelike correlations, previously distributed in the
form of a bipartite state Ω. Events A and C are timelike separated;
i.e., information can indeed travel from A to C: such information
is encoded into the states fΩxg, and later decoded by the
measurement fEyg. As the no-signaling principle constrains
spacelike correlations, the no-hypersignaling principle constrains
timelike correlations.

FIG. 2. Illustration of a hypersignaling theory. While the
system S alone satisfies Pm→n

S ⊆ Pm→n
d , and thus has signaling

dimension d, the composite system S ⊗ S has a signaling
dimension strictly larger than d2.
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of the polytope Pm→n
K , which are finite in number and

computed in the Supplemental Material [18].
The matrix g can be interpreted as the payoff function

defining a communication game, where the sender inputs x
and the receiver outputs y, leading to the corresponding
payoff gx;y. From this viewpoint, Eq. (3) represents the fact
that, for any game g, the average payoff of the composite
system S̄ never exceeds the payoff of the product of its
parts fSkg. A general framework to consider such game-
theoretic interpretation is developed in the Supplemental
Material [18], by extending the theory of extremal quantum
measurements [24,25] to general probabilistic theory.
The counterexample.—In what follows, we exploit our

general framework to construct a toy model theory that
violates the no-hypersignaling principle, namely such that
the signaling dimension of the composite system is larger
than the product of the signaling dimensions of its parts.
Our toy model theory is explicitly derived along with all its
constituents: elementary and composite systems, states,
measurements, and dynamics. In the process, we clarify
the relation between no-signaling, no-hypersignaling,
local tomography, and information causality, arriving at
the conclusion that the no-hypersignaling principle is
independent of all of these and must therefore be assumed
separately.
The elementary system here is the same as that used to

reproduce PR correlations in Refs. [15–17]. The states and
effects of the elementary system are vectors inR3, and there
only exist four extremal states and four extremal effects,
namely fωxg3x¼0 and feyg3y¼0. As shown explicitly in the
Supplemental Material [18] (see also Refs. [26,27]), all
possible bipartite extensions can be given in terms of 24
extremal bipartite states, namely fΩxg23x¼0, and 24 extremal
bipartite effects, namely fEyg23y¼0. The first 16 states (i.e.,
0 ≤ x ≤ 15) and the first 16 effects (i.e., 0 ≤ y ≤ 15) are
factorized, while the remaining ones are all entangled.
Because of self-consistency and the requirement that

nontrivial reversible dynamics exist, however, bipartite
states and effects cannot be chosen arbitrarily. As explicitly
shown in the Supplemental Material [18], only the follow-
ing three models satisfy all requirements: (i) PR model this
is the theory used to model PR boxes [15–17]. It contains
all possible extremal bipartite states, including the eight
entangled ones (i.e., fΩxg23x¼0). Self-consistency then
imposes that only extremal factorized effects are allowed
(i.e., fEyg15y¼0). (ii) HS model this is the theory that we
prove to be hypersignaling (HS). It contains only factorized
extremal states (i.e., fΩxg15x¼0), but allows for all possible
extremal effects, even entangled ones (i.e., fEyg23y¼0).
(iii) Hybrid models in addition to all factorized states
and effects, two entangled states and two entangled effects
are allowed. Self-consistency singles out only two such
models: states fΩ20;Ω22g with effects fE21; E23g, or states
fΩ21;Ω23g with effects fE20; E22g.

Because of the presence of bipartite entangled states
fΩxg23x¼16, the PR model is compatible with superquantum
spacelike correlations, and this is actually the reason why it
was introduced in the first place. However, we show in
Supplemental Material [18], that the lack of entangled
effects prevents the PR model from being hypersignaling.
In a perfectly complementary way, the HS model cannot
violate any Bell inequality, due to the lack of entangled
states. However, in what follows, we show that, due to the
presence of bipartite entangled effects fEyg23x¼16, the HS
model violates the no-hypersignaling principle.
Let us start by noticing (see the Supplemental Material

[18]) that the elementary system has a signaling dimension
of two and is thus equivalent to the exchange of one
classical bit. Therefore, to provide a counterexample to the
no-hypersignaling principle, we need to provide a corre-
lation ξ which is compatible with the composition of two
elementary HS systems but cannot be obtained by exchang-
ing only two classical bits.
One such a conditional probability has seven inputs and

seven outputs and is given by

ξ ¼ 1

2

0
BBBBBBBBBBBB@

1 0 0 0 0 1 0

0 1 0 0 0 0 1

0 1 1 0 0 0 0

0 0 1 0 0 0 1

0 0 0 1 0 1 0

0 0 0 1 0 0 1

0 0 0 0 1 1 0

1
CCCCCCCCCCCCA

: ð4Þ

This is explicitly obtained by applying the formalism
developed in the Supplemental Material [18]. More explic-
itly, the rows of ξ are the conditional probabilities obtained
by measuring the following measurement: f1

8
E0; 18E1; 18E6;

1
8
E8; 18E10; 18E15; 14E23g, on each of the following seven

states: fΩ0;Ω2;Ω6;Ω7;Ω12;Ω13;Ω15g.
The fact that ξ does not belong to P7→7

4 , and thus violates
the HS principle, is an immediate consequence of the
characterization of polytope P7→7

4 provided in the Supple-
mental Material [18].
Since ξ∈P7→7

4 , there exists a game which violates
Eq. (3). Indeed, consider the following game matrix g:

g ¼ 1

21

0
BBBBBBBBBBBB@

2 0 0 0 0 1 0

0 2 0 0 0 0 2

0 2 2 0 0 0 0

0 0 2 0 0 0 2

0 0 0 1 0 1 0

0 0 0 1 0 0 0

0 0 0 0 2 1 0

1
CCCCCCCCCCCCA

:
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It immediately follows by explicit computation that
gT · ξ ¼ 1

2
, while maxq∈P7→7

4
gT · q ¼ 10

21
< 1

2
. This latter

result can be verified by explicitly computing the payoff
associated with game g for all of the vertices of the poly-
tope P7→7

4 , which are 35 9863 in number as shown in the
Supplemental Material [18]. The interested reader can play
the game of selecting four columns of g and further
selecting one entry per row (within these columns), with
the aim of maximizing the sum of the selected entries. They
will then verify that no strategy will lead to a payoff larger
than 10

21
.

Outlooks.—We have seen how it is possible to construct
a generalized probabilistic theory—the HS model—that
contradicts quantum theory, but only in timelike scenarios.
This is consequence of the fact that the HS model has been
arranged so that only separable states are allowed. In this
way, when measurements are restricted to be separable due
to locality constraints (as it is the case when testing
spacelike correlations), the HS model never goes beyond
classical theory. However, the possibility of having
entangled measurements enables hypersignaling, thus
proving that the HS model indeed goes beyond quantum
theory in timelike scenarios.
It is now important to understand how hypersignaling is

logically related with other possible “anomalies,” such as
the violation of local tomography or the violation of
information causality. If any hypersignaling theory neces-
sarily violates also other principles concerning spacelike
correlations, then one could rightly argue that the phe-
nomenon of hypersignaling might be ruled out just by
looking at spacelike correlations. However, the point of this
Letter is to argue the opposite: that timelike correlations
require a new independent principle.
The fact that hypersignaling and information causality

are independent is easy to see. As a necessary condition for
the violation of information causality is the presence of
entangled states, and since the HS model only contains
separable states, then the HS model necessarily obeys
information causality, despite allowing hypersignaling.
Vice versa, we know that the PR model violates informa-
tion causality but, since it only allows separable measure-
ments, it cannot display any form of hypersignaling. The
situation is depicted in left Fig. 3.
We now turn to the condition of local tomography [22].

From the explicit expression of the pure states of the HS
model, it is possible to verify, as done in the Supplemental
Material [18], that the elementary system S has linear
dimension lðSÞ ¼ 3 and that the bipartite system S ⊗ S
has linear dimension lðS ⊗ SÞ ¼ 9 ¼ lðSÞ2. Thus, the HS
model is locally tomographic, despite being hypersignal-
ing. Vice versa, there exist consistent theories that obey the
no-hypersignaling principle and yet are not locally tomo-
graphic. As an example, let us consider restrictions (for
example, superselections) of quantum theory, as introduced
in Ref. [28]. Since such theories are restrictions of quantum

theory, they cannot exhibit hypersignaling: if they did, then
quantum theory would also exhibit hypersignaling, which
is not true. For example, real quantum theory [22] and
fermionic quantum theory [28] are two possible such
restricted quantum theories. However, as proved in
Refs. [22,28,29], both theories are not locally tomographic.
The situation is summarized in right Fig. 3.
We also notice that the no-hypersignaling principle can

be violated by theories that do not show superadditivity of
classical capacities. In Ref. [30], the authors show that a
locally tomographic theory cannot feature superadditivity
effects of classical capacities. Thus, hypersignaling does
not necessarily imply superadditivity of classical capacities,
because the HS model is locally tomographic. In passing
by, the maximal mutual information for the hypersignaling
correlation ξ in Eq. (4) (numerically optimized over any
prior probability distribution) is less than 1.78 bits, which is
below the Holevo bound of log2 4 ¼ 2.
One interesting question arises from noting that while the

HS model has classical spacelike correlations and super-
quantum timelike correlations, the PR model has super-
quantum spacelike correlations and classical timelike
correlations. Could it be that a theory can be superquantum
only with respect to either spacelike or timelike correla-
tions, but not both? Could quantum theory have the unique
distinction of “balancing” between these two extrema? It
turns out that the answer is no, and follows from the
example of the hybrid models derived above. In order to
obtain the hypersignaling ξ in Eq. (4), we need seven
factorized states and seven effects among which only one,
precisely E23, is not factorized. Since E23 is exactly one of
those entangled effects admitted in the hybrid models, we
know that the same ξ can be surely obtained in those
models too. Moreover, since in the hybrid models two
entangled states are also available, superquantum spacelike

FIG. 3. No-hypersignaling vs information causality and vs
local tomography. Left: the diagram compares theories satisfying
information causality (yellow set) and the no-hypersignaling
principle (blue set): CT (classical theory), QT (quantum theory),
PR model (the toy model theory for PR boxes), and HS model
(the locally classical, hypersignaling theory constructed in this
Letter). Right: comparison between local tomography and no
hypersignaling as two features of general probabilistic theories.
Examples of theories that are nonhypersignaling but violate local
tomography are provided by real quantum theory (RQT) and
fermionic quantum theory (FQT). The HS model is locally
tomographic but hypersignaling. Finally CT, QT, and the PR
model lie in the intersection, as they obey both local tomography
and the no-hypersignaling principle.
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correlations can also be created. Hence, the hybrid models
have the ability to create both spacelike and timelike
superquantum correlations.
Finally, we compare the no-hypersignaling principle

with two recently proposed and related principles, that
is, dimension mismatch [21] and information content [31].
Both such principles rule out superquantum theories on the
basis of the correlations achievable by a single-partite
system, in contrast with the no-hypersignaling principle
which requires composite systems. However, they achieve
this by considering a more complicated setup, where the
choice of the information to be decoded is not fixed but
depends on an additional input (a second question) to the
receiver. Moreover, both the dimension mismatch principle
and the information content principle rely on a certain
degree of arbitrariness in the criteria chosen to benchmark
operational theories: dimension mismatch is defined with
respect to an arbitrarily chosen reference task, i.e., pairwise
state discrimination, while information content is defined
with respect to an arbitrarily chosen information measure,
i.e., mutual information. This is in contrast with the no-
hypersignaling principle proposed here, where the full set
of input-output correlations is considered without the need
to invoke any particular discrimination task or information
measure.
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