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We introduce a method, based on a novel thermodynamic integration scheme, to extract the Flory-
Huggins χ parameter as small as 10−3kT for polymer blends from molecular dynamics (MD) simulations.
We obtain χ for the archetypical coarse-grained model of nonpolar polymer blends: flexible bead-spring
chains with different Lennard-Jones interactions between A and B monomers. Using these χ values and a
lattice version of self-consistent field theory (SCFT), we predict the shape of planar interfaces for phase-
separated binary blends. Our SCFT results agree with MD simulations, validating both the predicted χ
values and our thermodynamic integration method. Combined with atomistic simulations, our method can
be applied to predict χ for new polymers from their chemical structures.
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The Flory-Huggins χ parameter is undoubtedly impor-
tant for inhomogeneous polymers. The value of χ quantifies
the free energy to mix different species and governs phase
behavior and mesoscale structures of polymer blends and
block copolymers, which are critical in many applications,
including lithography and photovoltaics [1,2]. Predicting χ
from molecular structures would accelerate the develop-
ment of new materials.
Although χ can be measured experimentally, for example

by using x-ray or neutron scattering and the random phase
approximation (RPA) [3], predicting χ is very challenging.
The free energy of mixing depends on many factors,
including the mismatch in enthalpic interactions and local
packing of different monomers. An accurate prediction of χ
can only be obtained from the proper liquidlike structures
of polymers. As a consequence, the effect of the chemical
structure on χ is difficult to parameterize.
In principle, χ can be predicted using molecular simu-

lations by imitating an experiment from which χ can be
determined. For example, miscible binary blends can be
simulated, the structure factor SðqÞ measured, and RPA
applied to fit χ [4]. Nevertheless, this approach is limited to
polymers with relatively large χ values. To observe enough
variation in SðqÞ to fit χ, the blend must be not too far from
phase separation, which, for small χ, implies long chains,
large simulation systems and long equilibration times.
Values of χ have also been obtained from vapor-

liquid equilibria densities for oligomer blends using Gibbs
ensemble Monte Carlo (GEMC) simulations [5]. However,
χ values obtained this way are reported with rather large
uncertainties as a result of the uncertainties in the phase
equilibria densities. For blends of olefin oligomers, the
uncertainty in χ is as big as the experimental value.
Finally, χ has been obtained from analyzing the

coexistence volume fractions or interfacial concentration
profiles between demixed chains in simulations [6,7]. This

approach is again limited to systems with large χ because of
the large systems and long times required to equilibrate a
demixed configuration with long chains.
In this Letter, we introduce a general method to accurately

extract χ frommolecular dynamics (MD) simulations.Using
a novel thermodynamic integration, we compute the excess
Helmholtz free energy of mixing ΔFex per monomer, from
which χ can be extracted

βΔFex ¼ βFblend − ϕAβFA
pure − ϕBβFB

pure ¼ χϕAϕB: ð1Þ

Here, β ¼ 1=kT, ϕA and ϕB are the volume fractions of
polymers A and B, and Fblend, FA

pure, and FB
pure are the free

energies of the binary blend, homopolymer A, and homo-
polymer B, respectively.
We perform a thermodynamic integration on a path along

which polymer A continuously transforms (“morphs”) into
polymer B. The path variable λ represents the degree of
similarity between two kinds of polymers. We obtain the
free energy Fblend and FB

pure, with respect to the free energy
of homopolymer A, as the thermodynamic work of morph-
ing either some of the chains (for the blend) or all the chains
(for pure B). The homopolymer A melt serves as the
reference state. In this way, we avoid awkward reference
states of polymer gases, which appear in conventional
thermodynamic integration with respect to temperature. We
also avoid trying to extract the mixing free energy as a
small difference between large free energies (i.e., we avoid
comparing the free energy required to “boil” a blend versus
pure components).
The χ parameter we obtain in Eq. (1) is the “apparent” χ

that one can extract by fitting the structure factor SðqÞ of a
miscible blend in the long wavelength limit or by fitting the
peak intensity of SðqÞ for a disordered diblock copolymer
melt to the renormalized one-loop (ROL) theory [8–10].
This value of χ depends weakly on chain length and can be
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regarded as the sum of an “effective” χe for chains of
infinite length, plus a one-loop renormalized correction
term of order OðN−1=2Þ. Therefore, one can obtain χe by
extrapolating the apparent χðNÞ to the infinite chain length
limit (N−1=2 ¼ 0). Thus, the apparent χ is the relevant
parameter for modeling mesostructures and phase behav-
iors using self-consistent field theory (SCFT) for chains
with finite length N. The apparent χ may also depend on
chain concentration ϕ in whatever way is necessary to
reconcile the actual dependence of the mixing free energy
on ϕ with the assumed form of Eq. (1) [10].
To obtain ΔFex, we define two coupling functions fðλÞ

and gðλÞ. As λ varies downward from unity, fðλÞ and gðλÞ
morph polymer A (λ ¼ 1) into polymer B. The function
fðλÞ transforms the intraspecies bonded and nonbonded
interactions of polymer A (EAA) to those of polymer B so
that EBB ¼ fðλÞEAA. Likewise, gðλÞ morphs the non-
bonded intraspecies interactions of polymer A (Enb

AA) into
the cross interactions between A and B (Enb

AB).
Our method relies on the fact that the partial derivative of

the excess Helmholtz free energy of mixing with respect to
λ is an energylike quantity, measurable in simulations. By
differentiating the log of the partition functions for mixed
and pure systems with respect to λ, we show that the free
energy integrand is an explicit function of the interactions
for polymer B

∂ΔFexðλÞ
∂λ ¼ ∂FblendðλÞ

∂λ −ϕB
∂FB

pureðλÞ
∂λ

¼
�∂fðλÞ

∂λ
XNB

i¼1

XNB

j¼i

EAAþ
∂gðλÞ
∂λ

XNA

i¼1

XNB

j¼1

Enb
AA

�
blend

−ϕB

�∂fðλÞ
∂λ

XNB

i¼1

XNB

j¼i

EAA

�
pure

: ð2Þ

Here, hiblend and hipure denote the ensemble average for
the blend and homopolymer B, and NA and NB are the total
numbers of monomers A and B. Because the volume
change upon mixing and the resulting PV work are
negligible, we approximate the Gibbs free energy of mixing
ΔGex, from which the Flory-Huggins χðλÞ is more properly
obtained as equal to the excess Helmholtz free energy of
mixing ΔFex.
At each λi, we perform two simulations: one for a

randomly mixed binary blend, where a volume fraction ϕ
of the chains are morphed, and one for a homopolymer
melt, where all chains are morphed. The free energy
integrand can be then obtained by measuring the inter-
species and intraspecies potential energy of the morphing
molecules from the simulations. By measuring the excess
free energy integrand [Eq. (2)] from simulations at discrete
points fλig, we can compute the excess free energy by
numerical integration ΔFex ¼

R λ1
λ0
dλ½∂ΔFexðλÞ=∂λ�. In our

method, the excess free energy of mixing is not only
averaged over simulation trajectories, but also over many
morphing chains, which leads to statistically robust results
even for systems with small χ.
In previous work, we have obtained χ for the special and

simple case of bead-spring chains that differ only in
backbone stiffness but otherwise have identical interactions
between monomers [11]. It was predicted long ago using
polymer field theory that even this simple difference
between chains would give rise to “entropic” repulsive
interactions, arising only from nonideal local packing [12].
Our results are in excellent agreement with those predic-
tions and consistent with experimental data [13]. Our
previous work, however, cannot incorporate enthalpic
interactions between monomers.
In real polymers, mismatches in enthalpic interactions

between monomers can arise from differences in molecular
polarizability, the presence of dipolar groups of different
magnitude, or differences in hydrogen bonding propensity.
The simplest model with different enthalpic interactions
between monomers, which is a coarse-grained idealization
of real nonpolar polymers with different molecular polar-
izability, is the ubiquitous example of a structurally
symmetric polymer blend of flexible bead-spring chains
with different interactions between A and B monomers. In
this Letter, we develop and apply a new morphing strategy
[Eq. (2)] to obtain χ from simulations of this important and
widely studied system. We then confirm our results using
our χ values together with lattice self-consistent field theory
to predict the density profiles of planar interfaces for phase-
separated binary mixtures, which we can compare to
simulation results for immiscible blends.
In our MD simulations, we describe pairwise interactions

of polymer A using a Lennard-Jones (LJ) potential

UAAðrÞ ¼
8<
:

4ϵ
h�r

σ

�
−12

−
�r
σ

�
−6
i

if r ≤ 2σ

0 if r > 2σ;
ð3Þ

in which ϵ ¼ kT. We morph polymer A into polymer B
along a simple path: the intraspecies interactions of
polymer B vary linearly away from UAAðrÞ, so fðλÞ ¼ λ
and UBBðλ; rÞ ¼ λUAAðrÞ. A-B interactions are controlled
by gðλÞ ¼ λ1=2 so thatUABðλ; rÞ ¼ λ1=2UAAðrÞ. This choice
for gðλÞ satisfies the Berthelot mixing rule for dispersive
interactions so any value of λ corresponds to a coarse-
grained model of a nonpolar blend with A and Bmonomers
of different polarizability. Tuning λ away from unity creates
a mismatch in enthalpic interactions between different
polymers. For this structurally symmetric blend, bonded
interactions remain the same during morphing, described
by a harmonic potential UbðlÞ ¼ 1

2
kbðl=σ − 1Þ2, with bond

length l and kb ¼ 400kT.
We perform MD simulations using the GROMACS

simulation platform [14]. For each λ, we perform NPT
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simulations at T ¼ 1 and P ¼ 0.1kT=σ3 for a melt of
homopolymer B and a symmetric binary blend (ϕ ¼ 0.5).
Each simulation box contains 2196 chains of bead-spring
40-mers (N ¼ 40). The randomly mixed initial configura-
tions for the blend simulations are generated by randomly
labeling chains in an equilibrated homopolymer melt. To
ensure sufficient sampling, our simulations last about 10τ,
where τ is the time for chains to diffuse by their radius of
gyration Rg.
It turns out that the free energy integrand varies quite

linearly with respect to λ, resulting in a parabolic function
for the excess free energy of mixing [Fig. 1(a)]. The free
energy cost is positive, indicating that the mismatch in
enthalpic interactions results in a penalty for mixing.
When the free energy cost of mixing is large enough, the

binary blends demix. Our morphing method for obtaining
the excess free energy assumes a one-phase system. To stay
away from demixing, we only compute ∂ΔFexðλÞ=∂λ for
λ ≥ 0.875. For systems with λ < 0.875, our chains tend to
form large clusters [Fig. 1(b)], indicating that these systems
may demix. For λ > 0.875, we observe weakly inhomo-
geneous miscible blends. We will show later that we can
accurately infer χ for demixed chains by extrapolating to
smaller λ.
The value of χ is positive, increasing quadratically when

λ decreases from unity (Fig. 2). The location of the critical
point (χN ¼ 2 for ϕ ¼ 0.5) is estimated at about λ ¼ 0.88.
Recall that we see indications of phase separation at λ ¼
0.875 [Fig. 1(b)], although not fully resolved to two
demixed phases because of slow equilibration, consistent
with a critical point at λ ¼ 0.88.
To test our predicted χ, we compare the planar interfaces

of phase-separated binary blends, obtained using a lattice
version of SCFT, to the interfaces we observe in MD
simulations. Lattice SCFT has been successfully applied to

describe many interfacial phenomena, including chain
adsorption on a surface and gradient copolymer self-
assembly [15–18].
In the lattice SCFT model, we treat flexible chains of

type A and B as random walks on a discretized pseudo-one-
dimensional lattice frig, biased by a chemical potential
field WA=BðriÞ and a hydrostatic pressure field VðriÞ. The
chemical potential field governs the cost for monomer
exchange by WA=BðriÞ ¼ χ½1 − 2ϕA=BðriÞ�=2, where ϕA

and ϕB are the local volume fractions of polymers A and
B, respectively. The hydrostatic pressure VðriÞ ensures the
incompressibility of the melt so that ϕAðriÞ þ ϕBðriÞ ¼ 1.
The lattice spacing of the pseudo-one-dimensional lattice

equals the statistical segment length b (1.23σ) of our bead-
spring chains so that random walks on the lattice have the
proper mean-square end-to-end distance. Each lattice site
represents a layer of polymer melt, with a thickness of b.
The lattice model works well for describing phase-sepa-
rated binary mixtures when the planar interface is wider
than the statistical segment length b.
To complete the lattice SCFT model for a phase-

separated binary blend, we write the Boltzmann factor to
place the first monomer A or B as pA=Bðri; 1Þ ¼
e−WA=BðriÞ−VðriÞ. The propagation of this Boltzmann factor
pA=Bðri; nÞ is governed by a recursion relation, which is a
discretized version of the SCFT propagator equa-
tion [17,18]. We impose reflecting boundary layers to
the two ends of the discretized lattice frig and take the
total number of lattice layers L to be well in excess of the
ultimate planar interface width.
For a given χ and chain length N, we can compute the

interface of the binary blend by solving self-consistently for
the density field ϕðriÞ and the hydrostatic pressure VðriÞ.
For a system with L layers, computing the binary interface
requires solving 2L equations for 2L variables.
We predict the interfacial density profiles of symmetric

blends for two different λ values, one with χð0.85Þ and
the other with χð0.8Þ. The two χ values are obtained by
extrapolation along the quadratic fitting function (Fig. 2).
These χ values are convenient because they result in planar

FIG. 1. (a) Excess free energy integrand ∂βFex=∂λ (blue, left
axis) and free energy βFex (green, right axis) vs morphing
parameter λ. Points are simulation results, error bars smaller
than symbols, and dashed curves are linear and quadratic fits.
(b) Simulation snapshots of binary blends for various λ. The
critical point χN ¼ 2 is at about λ ¼ 0.88.

FIG. 2. Flory-Huggins χ vs morphing parameter λ. Thermo-
dynamic integration (disks), quadratic fitting function (dashed
curve), and location of mean-field critical point χN ¼ 2 (black
dashed line). Error bars smaller than symbols.
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interfaces for bead-spring 40-mers that are neither too wide
to simulate nor too narrow compared with the statistical
segment length b. We avoid systems too near the critical
point (λ ¼ 0.88 and 0.875), where the interfaces may be too
wide to fit in a manageable simulation box, and the
equilibration time is too long.
SCFT calculations give planar interfaces for immiscible

blends of bead-spring 40-mers, well described by a hyper-
bolic tangent function [Fig. 3(a)]

ϕðxÞ ¼ 1

2
þ
�
1

2
− ϕcoex

�
tanhðx=ξÞ: ð4Þ

Here, x is the perpendicular distance from the center of the
interface, ξ is the characteristic width of the interface, and
ϕcoex is the coexistence volume fraction in the bulk region.
As expected, the width ξ decreases with increasing χ.
A tanh shape for the planar interface is consistent with
previous analytical SCFT results [19–21].
To comparewith our SCFTinterfacial profiles,weperform

MD simulations of symmetric binary blends with λ ¼ 0.85
and λ ¼ 0.8. The initial configurations are constructed with
sharp planar interfaces, built by gluing two slabs of bead-
spring chains together. To help reach an equilibrated con-
figuration more quickly, we also randomly swap chains
between slabA and slabB so that the initial concentrations in
the demixed slabs are as predicted by the SCFT coexistence
volume fractions ϕcoex far from the interface.
The planar interfaces are sharp initially, broaden during

our simulations, and become stable when the systems reach
equilibrium. The SCFT results agree nicely with our MD

simulations, providing evidence that our predicted χ values
are accurate and our thermodynamic integration method is
valid (Fig. 3).
The consistency between our SCFT calculations and MD

simulations also suggests that χ depends, at most, weakly
on blend composition ϕ for our bead-spring chains. We
have only extracted χ for ϕ ¼ 0.5, but ϕ varies significantly
through the interface. If χ depended strongly on ϕ, the
shape of the interface predicted by SCFTwould be affected
(e.g., if χ were smaller away from ϕ ¼ 0.5, the tails of the
interface would be wider). In future work, we will inves-
tigate directly the dependence of χ on ϕ by applying our
method to systems with asymmetric compositions.
The total computational cost for predicting χ using our

method is significant but manageable. Using parallel CPU
computing (with typically about 1000 beads per CPU), we
generate data for Figs. 1 and 2, using about 120,000 CPU
hours. Considering how small the errors are, one can
decrease the simulation size and duration and still obtain
χ accurately.
One way of describing our method is that it effectively

combines the strength of MD simulations in performing
proper thermodynamic averages of many interacting flex-
ible molecules of irregular shape with a well-defined
analytical path to morph a one-component reference system
into a two-component blend. As such, it resembles the
insertion free energy method, in which the thermodynamic
work is computed as a single molecule in solution is
transformed from invisible to visible; this method has been
successfully used to compute solvation energies of dis-
solved species, including biomolecules [22,23].
Alternative analytical approaches to estimate χ have a hard

time with averaging over the liquidlike structure or do not
perform a proper thermodynamic integration. Simple time-
honored estimates for χ inevitably make uncontrolled
assumptions regarding the relative positions of interacting
species. For example, we may approximate a melt of bead-
spring chains as a mixture of LJ monomers on a cubic lattice
with a spacing of 21=6σ, from which we can approximate
χHðλÞ analytically. The resulting values of χHðλÞ scale
correctly, but differ by more than a factor of two from our
results and provide no systematic way to introduce chain
structure. More sophisticated calculations have been per-
formed, using the self-consistent polymer reference inter-
action site model (PRISM) to introduce structural
correlations [4]. Nevertheless, formulating such calculations
is not easy, especially for systems with complicated inter-
actions, and the results are of unknown accuracy.
Although we have developed our morphing method for

the mixing free energy of bead-spring polymer blends, it
can be applied more generally to any liquid mixtures, as
long as a suitable morphing path can be found. For complex
systems, we can obtain χ by morphing multiple types of
interactions with different coupling functions along a single
reaction coordinate λ. Alternatively, we may also perform
“multistage” morphing, in which different interactions are

FIG. 3. (a) Volume fraction profile for polymer A near the
interface. MD simulations (symbols) and lattice SCFT (curves).
(b) Snapshots of planar interfaces for λ ¼ 0.85 and λ ¼ 0.8.
A single chain demonstrates length scale.
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handled in series. Indeed, designing the morphing paths
and functions can be challenging for complex molecules.
Still, as long as well-averaged free energy integrands are
obtained during morphing, the thermal dynamic integration
can lead to a unique value of χ, regardless of the choices of
morphing paths and functions. By relating the excess free
energy integrand to energylike quantities that can be
measured in simulation, our method provides a general
route to mixing free energies for real molecules.
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