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There has been a surge of recent interest in the role of anisotropy in interaction-induced phenomena in
two-dimensional (2D) charged carrier systems. A fundamental question is how an anisotropy in the energy-
band structure of the carriers at zero magnetic field affects the properties of the interacting particles at high
fields, in particular of the composite fermions (CFs) and the fractional quantum Hall states (FQHSs). We
demonstrate here tunable anisotropy for holes and hole-flux CFs confined to GaAs quantum wells, via
applying in situ in-plane strain and measuring their Fermi wave vector anisotropy through commensu-
rability oscillations. For strains on the order of 10−4 we observe significant deformations of the shapes of
the Fermi contours for both holes and CFs. The measured Fermi contour anisotropy for CFs at high
magnetic field (αCF) is less than the anisotropy of their low-field hole (fermion) counterparts (αF), and
closely follows the relation αCF ¼ ffiffiffiffiffi

αF
p

. The energy gap measured for the ν ¼ 2=3 FQHS, on the other
hand, is nearly unaffected by the Fermi contour anisotropy up to αF ∼ 3.3, the highest anisotropy achieved
in our experiments.
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High-mobility, two-dimensional (2D) charged carriers at
high perpendicular magnetic fields B and low temperatures
exhibit rich many-body physics driven by Coulomb inter-
action. Examples include the fractional quantum Hall state
(FQHS), Wigner crystal, and stripe phase [1,2]. Recently,
the role of anisotropy has become a focus of new studies
[3–23]. This interest has been amplified by the recognition
that, although the FQHSs at fillings 1=q (q ¼ odd integer)
are well described by Laughlin’s wave function with a
rotational symmetry [24], there is a geometric degree of
freedom associated with the anisotropy of the 2D carrier
system [8].
The fundamental issue we address here is how the

anisotropy of the energy-band structure of the low-field
carriers transfers to the interacting particles at high B and,
in particular, to the FQHSs and composite fermions (CFs).
The latter are electron-flux quasiparticles that form a Fermi
sea at a half-filled Landau level [2,25], and provide a simple
explanation for the nearby FQHSs [26]. Because CFs are
generated entirely by interactions and are thus not adia-
batically connected with the zero-field particles, there is no
agreement yet as to what properties of the zero-field
particles, if any, the CFs inherit. While some theories
predict that the CF Fermi contour anisotropy (αCF) should
be the same as the zero-field (fermion) contour anisotropy
(αF) [3,23], others conclude that αCF is noticeably smaller
than αF [20–22]. This question was also addressed in
several recent experimental studies. For 2D electrons
occupying AlAs conduction-band valleys with an aniso-
tropic effective mass, a pronounced transport anisotropy
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FIG. 1. (a) Calculated Fermi contours of GaAs holes at density
p ¼ 1.8 × 1011 cm−2 as a function of strain ϵ along the ½1̄10�
direction. Solid and dashed contours represent two spin-split
subbands; the green circle with radius k0 ¼

ffiffiffiffiffiffiffiffi
2πp

p
shows a spin-

degenerate, circular Fermi contour at the same density. (b) Sche-
matic of the experimental setup showing a thinned GaAs wafer
glued on a piezo actuator. A strain gauge mounted underneath
measures the strain along ½1̄10�. (c) Sample fabricated to an L-
shaped Hall bar has regions with electron-beam resist gratings on
the surface. Thick arrows indicate the deformation of the crystal
when a positive voltage VP is applied to the piezo. The resulting
deformed cyclotron orbits are shown in black; note that these are
rotated by 90° with respect to the Fermi contours in reciprocal
space. The shapes of the orbits and therefore the Fermi contours are
determined via commensurability oscillations measurements.
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was reported for CFs, but the anisotropy of the CF Fermi
contour could not be measured because of the insufficient
sample quality [5]. More recently, experiments probed the
Fermi contour anisotropy of low-field carriers (both elec-
trons and holes), and of CFs in GaAs quantum wells by
subjecting them to an additional parallel magnetic field (B∥)
[12–16]. However, the B∥-induced anisotropy is primarily
caused by the coupling between the in-plane and out-of-
plane motions of the carriers, rendering a theoretical under-
standing of the data challenging. Furthermore, a strong B∥
can lead to a bilayerlike charge distribution [15].
As highlighted in Fig. 1, we demonstrate a simple yet

powerful technique to tune and probe the anisotropy of both
low-field carriers and high-field CFs without applying B∥.
The experiments consist of subjecting the sample, a GaAs
2D hole system (2DHS), to strain [27–30] and measuring
αF and αCF via commensurability oscillations measure-
ments. We find that, for a given value of strain, CFs are less
anisotropic than their low-field 2D hole counterparts, and
the anisotropies are related through a simple empirical
relation: αCF ¼ ffiffiffiffiffi

αF
p

. In contrast, the measured energy gap
of the ν ¼ 2=3 FQHS remains almost constant even for αF
as large as 3.3. Our results allow a direct and quantitative
comparison with theoretical predictions.
Figure 1(a) shows the results of numerical calculations

for the strain-induced Fermi contour anisotropy of our
sample, a 2DHS confined to a 175-Å-wide GaAs (001)
quantum well [31–33]. The self-consistent calculations are
based on an 8 × 8 Kane Hamiltonian [30,34,35]. Without
strain (ϵ ¼ 0), the Fermi contour of holes is fourfold
symmetric but is split into two contours because of the

spin-orbit interaction [35]. The minority-spin contour is
nearly circular while the majority-spin contour is warped.
When tensile strain (ϵ > 0) is applied along ½1̄10�, the
hole Fermi contours become elongated along ½1̄10� and
shrink along the ½110� direction [30,34–38]. On the other
hand, compressible strain (ϵ < 0) has the opposite effect
[Fig. 1(a)]. Our experimental setup for applying in situ
tunable strain to the sample is shown in Figs. 1(b) and 1(c)
[28]. An L-shaped Hall bar is etched into the GaAs wafer
which is thinned to ∼120 μm and glued on one surface of a
stacked piezo actuator. When a voltage VP > 0 (VP < 0) is
applied to the piezo, the sample expands (contracts) along
½1̄10�. This is monitored using a strain gauge glued to the
opposite face of the piezo [28–30].
In order to measure the Fermi wave vectors, we fabricate

periodic gratings of negative electron-beam resist, with
period a ¼ 200 nm, on the surface of the L-shaped Hall bar
[Fig. 1(c)]. The grating induces a periodic strain onto the
GaAs surface, which in turn results in a small periodic
modulation of the 2DHS density via the piezoelectric effect
[32,33,39]. In the presence of B, when the cyclotron motion
of holes becomes commensurate with a, the magnetoresist-
ance shows oscillations whose minima positions are
directly related to the carriers’ Fermi wave vector in the
direction perpendicular to the current [12,32,39,40].
Figure 1(c) shows an example when tensile strain is applied
along ½1̄10�; the elongated cyclotron orbits under a finite B
are indicated by black curves.
Figure 2(a) shows magnetoresistance traces for ϵ¼−1.8×

10−4. The red and blue traces are from the patterned regions
along the ½110� and ½1̄10� directions, respectively, while the
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FIG. 2. (a) Magnetoresistance traces taken from different regions of the Hall bar when strain ϵ ¼ −1.8 × 10−4 is applied along ½1̄10�.
The red and blue traces are for the patterned regions along the ½110� and ½1̄10� arms, while the black trace is for an unpatterned region.
(b), (c) The red and blue traces in (a) are shown enlarged, exhibiting commensurability features for holes at low fields (b), and for CFs at
high fields (c) near Landau level filling factor ν ¼ 1=2. The effective field for CFs in (c) is shown as B�. The vertical lines in (b) and
(c) indicate the positions of minima satisfying the commensurability conditions for holes and CFs (see text). (d) Calculated Fermi
contours of spin-split holes at p ¼ 1.8 × 1011 cm−2 and ϵ ¼ −1.8 × 10−4. Red and blue dots represent the measured Fermi wave vectors
along the ½1̄10� and ½110� directions, using traces in (b). (e) An elliptical Fermi contour for CFs based on the measured Fermi wave
vectors, using traces in (c).
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black trace is for an unpatterned region. The red and blue
traces exhibit commensurability features for holes near
B ¼ 0 [Fig. 2(b)] and for CFs near ν¼1=2 [Fig. 2(c)].
To analyze the low-field hole data, we use the electrostatic
commensurability condition [32,39,41–44] for the minima
positions, 2Rc=a ¼ i − 1=4 (i ¼ 1; 2; 3;…) where 2Rc ¼
2ℏk=eB is the cyclotron orbit diameter, k is the 2DHS Fermi
wave vector perpendicular to the current, and a is the period
of the density modulation. For CFs, we observe commen-
surability features near ν¼1=2, or B1=2¼14.5T [Fig. 2(c)].
The positions of minima around ν ¼ 1=2 yield the Fermi
wave vector of CFs (k�) according to the magnetic
commensurability condition [33,45,46], 2R�

c=a ¼ iþ 1=4,
where the CF cyclotron diameter 2R�

c ¼ 2ℏk�=eB� and
B� ¼ B − B1=2 is the effective field for CFs [47,48].
In Fig. 2(d) we mark the measured Fermi wave vectors

for holes with red and blue dots along ½1̄10� and ½110�.
Although theoretical calculations for holes predict two spin
subbands with different Fermi wave vectors [black solid
and dashed curves in Fig. 2(d)], we measure a single k for
each direction from the commensurability features [32,49].
The measured k½1̄10� (red dots) and k½110� (blue dots) are
close to the average calculated Fermi wave vectors for the
two spin subbands. Figure 2(e) shows k� measured for CFs
with red and blues dots. We depict the Fermi contour as an
ellipse because there are no theoretical calculations avail-
able for CFs, and also the area of an ellipse spanned by the
two measured k� accounts for the density of CFs which
are fully spin polarized at high fields [33]. Note that the

CF Fermi contour anisotropy αCF ≡ k�½1̄10�=k
�
½110� ¼ 0.77,

which is closer to unity than the 2D hole anisotropy
αF ≡ k½1̄10�=k½110� ¼ 0.53. Quantitatively, we find αCF ¼ffiffiffiffiffi
αF

p
to within 5%; see below.

Next we demonstrate the tunability of CF Fermi contour
anisotropy via strain. Figures 3(a) and 3(b) show magneto-
resistance traces near ν ¼ 1=2, taken along ½1̄10� and ½110�, at
different strains. In each panel, the green trace represents the
ϵ ¼ 0 case, where the Fermi contour is essentially isotropic
and k� ¼ k�0 ¼

ffiffiffiffiffiffiffiffiffi
4πp

p
[30]. The traces shown above the

green trace are for tensile strain (ϵ > 0)while those below are
for compressive strain (ϵ < 0). In Fig. 3(a) the positions of
resistance minima move towards (away from) B� ¼ 0 for
ϵ > 0 (ϵ < 0), while the opposite is true for Fig. 3(b). These
observations imply a distortion in the shape of CF cyclotron
orbits as depicted in the side panels of Figs. 3(a) and 3(b).
Figure 3(c) summarizes the measured k� along ½1̄10� and

½110�, normalized by k�0. Comparing k� values for com-
pressive and tensile cases, the change of k� for ϵ > 0 is
larger than for ϵ < 0. This asymmetry reflects the response
of the 2DHS Fermi contour to the applied strain; note that
in Fig. 1(a) ϵ > 0 deforms the hole Fermi contour more
significantly than the ϵ > 0 does. We also find that the
geometric means of k�=k�0 along the two perpendicular
directions remain close to unity [Fig. 3(d)]. This suggests
that CF Fermi contours are nearly elliptical, although we
cannot exclude a more complex shape.
Figure 4 illustrates the highlight of our study: compari-

son of strain-induced Fermi contour anisotropy for CFs and
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FIG. 3. (a) and (b) Commensurability features for CFs near ν ¼ 1=2 along the ½1̄10� and ½110� directions of the Hall bar as strain ϵ is
varied between −1.5 and þ1.4 × 10−4. Green traces are for the ϵ ¼ 0 case. Dashed lines are guides to the eye to follow the evolution of
the CF commensurability minima. Left panel of (a) and right panel of (b) show the direction of the strain (thick arrows), and shapes of
CF cyclotron orbits (circle and ellipses). (c) Measured CF Fermi wave vector k� along the ½1̄10� (red) and ½110� (blue) directions,
normalized to k�0, are shown as a function of ϵ. The lines are guides to the eye. Open circles are from a different sample cooldown and
represent the data shown in Fig. 2. (d) Geometric means of k�½110� and k�½1̄10�, normalized to k�0.
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holes. The measured anisotropy for CFs, αCF¼k�½1̄10�=k
�
½110�,

is shown by black circles, and the square root of the
calculated anisotropy for holes, αF ¼ k½1̄10�=k½110�, by an
orange curve. Here we use, for each k½1̄10� and k½110�, the
averaged values of k for the spin subbands, since experi-
ments measure only a single k for each direction [49].
Remarkably, the measured αCF for CFs essentially coin-
cides with

ffiffiffiffiffi
αF

p
over the entire range of strains applied in

the experiments. This is particularly striking because there
are no fitting or adjustable parameters.
Lastly, we study the impact of anisotropy on the strength

of FQHSs, focusing on the energy gap for the ν ¼ 2=3
state. The sample used for the measurements has
p ¼ 1.3 × 1011 cm−2, and exhibits commensurability fea-
tures only for holes along k½1̄10�. Moreover, using a different
cooldown procedure [30], we achieved larger strain values
(ϵ up to 5.5 × 10−4), and anisotropy (αF as large as 3.3) as
shown in Fig. 5. The measured energy gap Δ, determined
from the expression RðTÞ ∼ e−Δ=2T , is 2.1 K for ϵ ¼ 0, and
it decreases only to 2.0 K even for a large anisotropy αF ¼
3.3 [50]. The small decrease of Δ is consistent with recent
theoretical predictions [23], suggesting that the FQHSs in
the lowest Landau level are quite robust against anisotropy.
Returning to the Fermi contour anisotropy, our measure-

ments (Fig. 4) provide quantitative evidence for a simple
relation between the anisotropy of low-field fermions and
high-field CFs: αCF ¼ ffiffiffiffiffi

αF
p

. This appears to contradict some
of the theories which predict that αF and αCF should be the
same [3,23]. One can, however, qualitatively justify the
square-root relation [5]. In an ideal, isotropic 2D system,
the Coulomb interaction VC (∝ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
) determines

the physical parameters of CFs, including their effective
mass m�, which is linearly proportional to VC [2,25]. At a
given filling factor, VC is quantified solely by the magnetic
length lB ¼ ffiffiffiffiffiffiffiffiffiffiffi

ℏ=eB
p

[2,25]. Now, a system with an aniso-
tropic dispersion αF ≠ 1 atB ¼ 0 can bemapped to a system
with an isotropic Fermi contour and an anisotropic VC

(∝ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2αF þ y2=αF

p
) using the coordinate transforma-

tions x → x=
ffiffiffiffiffi
αF

p
and y → y

ffiffiffiffiffi
αF

p
. In such a system the

strength of VC at high fields thus depends not only on lB but
also on the direction; i.e.,VC anisotropy isαF. If one assumes
that CFs have a parabolic dispersion and an anisotropic m�
whose anisotropy follows linearly the anisotropy ofVC, then
themass anisotropy ofCFs is given byαF, implying that their
Fermi wave vector anisotropy is proportional to

ffiffiffiffiffi
αF

p
.

In conclusion, our results provide direct and quantitative
evidence for the inheritance of Fermi contour anisotropy by
CFs from their low-field fermion counterparts through a
simple relation: αCF ¼ ffiffiffiffiffi

αF
p

. While the discussion in the
preceding paragraph serves as a plausibility argument for
this relation, there is also some very recent rigorous
theoretical justification. In their numerical calculations for
anisotropic fermions with a parabolic band, Ippoliti et al.
[51] find that the relation αCF ¼ ffiffiffiffiffi

αF
p

is indeed empirically
obeyed [52]. It remains to be seen, both experimentally and
theoretically, if the relation holds when the fermions’ band
deviates significantly from parabolic [14,53].
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FIG. 4. Strain-dependent Fermi contour anisotropy of holes
(αF) and CFs (αCF). Black circles are the measured αCF. The
orange curve represents the square root of the calculated αF. The
open orange circle shows the measured αF for holes as described
in Fig. 2. The left and right insets show the hole and CF Fermi
contour shapes for ϵ ¼ −1.5 and 1.4 × 10−4.

FIG. 5. Longitudinal resistance at ν ¼ 2=3 is recorded for an
unpatterned region of the sample at different temperatures for
energy gap (Δ) measurements, in cases of αF ¼ 1.0, 2.1, and 3.3.
The y-axis scale is lnðRÞ, where R is measured in Ohms. The
slopes of the straight lines yield the energy gaps. The calculated
2DHS Fermi contour shapes are shown on the right, where the red
dots indicate the measured k½1̄10� and blue dots are determined
based on calculations for p ¼ 1.3 × 1011 cm−2.
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