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Topological defects have been observed and studied in a wide range of systems, such as cosmology, spin
systems, cold atoms, and optics, as they are quenched across a phase transition into an ordered state. These
defects limit the coherence of the system and its ability to approach a fully ordered state, so revealing their
origin and control is becoming an increasingly important field of research. We observe dissipative
topological defects in a one-dimensional ring of phased-locked lasers, and show how their formation is
related to the Kibble-Zurek mechanism and is governed in a universal manner by two competing time
scales. The ratio between these two time scales depends on the system parameters, and thus offers the
possibility of enabling the system to dissipate to a fully ordered, defect-free state that can be exploited for
solving hard computational problems in various fields.
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Topological defects occur in various fields such as
cosmology, spin systems, cold atoms, and optics, and
continue to attract great attention [1–3]. Their origin and
scaling behavior was first described by the Kibble-Zurek
(KZ) mechanism as a continuous system is quenched
across a phase transition into an ordered state via competing
time scales [4–6]. The KZ mechanism was experimentally
studied in various systems, such as atomic gases [7–9],
nonlinear optics [10], and condensed matter systems [6,11].
Because of complexity and experimental limitations, these
systems could not fulfill the exact KZ mechanism, and only
deal with limited aspects [8,11–13]. Topologically pro-
tected defects may prevent the system from reaching a
globally stable state with long range ordering [9]. In most
of these works the phase transition into an ordered state was
crossed by cooling the system from the outside. For the
most interesting regime of fast cooling, it is hard to
maintain uniformity over the entire system [7].
Here we present and characterize a new mechanism to

form topological defects without external cooling in a
dissipative system of coupled laser networks. In coupled
lasers and polaritons, dissipative coupling can drive the
system to a stable steady state phased-locked solution with
minimal loss, which can be directly mapped to the ground
state of the classical XY spin Hamiltonian [14–17].
However, when the dissipative dynamics is highly over-
damped [18] and occurs on a complex landscape, the
system fails to reach the globally stable solution and gets
stuck in local minima. For a 1D system on a closed ring,
such local minima are topological defects [9], characterized
by a nonzero winding number (or topological charge) [19].
Topological defects have also been extensively studied in

optical systems that involve continuous modes in multi-
mode cavities (lasers or nonlinear mixers) where the
coupling is mostly reactive [20–25]. We study such
topological defects on a discrete 1D ring network of lasers

with nearest neighbor dissipative coupling. Under the
assumption of constant field amplitudes, such coupled
lasers are well approximated as Kuramoto phase oscillators
[18] that cannot unwind topological defects [26]. We show
that fluctuations of the laser amplitudes, which are coupled
to the laser phase dynamics, act as an effective temperature,
and can unwind topological defects and anneal the system
to a globally stable defect-free state. We also show that the
formation of dissipative topological defects is connected to
competition between internal and external time scales, and
show the KZ mechanism in discrete systems with dis-
sipative coupling. In laser networks, these competing
time scales are the phase locking time [27,28] and
synchronization time of the laser amplitude fluctuations
[29–31]. Each time scale is controlled by many system
parameters but the defect formation can be expressed by a
single universal dependence on the ratio between them. Our
approach to find the globally stable and minimum loss
solution can be exploited for solving non-deterministic
polynomial time hard problems (NP-hard problems) in
various fields [15,32–34].
The network of lasers is formed in a degenerate cavity

that consists of two cavity mirrors, a 4f telescope, a mask
containing circular holes 10–30 in a ring geometry, and a
Nd:YAG gain medium pumped by a 100 μs pulsed Xenon
flash lamp [Fig. 1(a)]. The intracavity 4f telescope ensures
that any field distribution at the mask plane is imaged onto
itself after every round-trip. Accordingly, each hole on the
mask corresponds to an independent individual laser
[14,19,35,36]. We experimentally verified that lasers are
independent, both in intensity and phase (i) by blocking
one of the lasers inside the cavity and showing that
intensities of other lasers are unaffected, and (ii) by
showing that each laser is coherent with itself and incoher-
ent with all the other lasers [37]. Coupling between
adjacent lasers is introduced by moving the mirror M1
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away from the mask a distance (d) of a quarter-Talbot
length [38], which provides negative coupling between the
adjacent lasers, and results in a solution of out-of-phase
(0, π, 0, π, …) locked lasers [37,39]. The output from the
lasers was then focused on to a nonlinear KTP crystal, so
both the frequencies as well as the phases are doubled, and
then imaged on a CCD camera. In such a second harmonic
generation (SHG) scheme, the out-of-phase solution is
converted into an in-phase solution (0, 0, 0, 0, ...), which
is equivalent to phase locking of lasers with positive
coupling [19,39].
Representative experimental results for phase locking 10

lasers on a ring network are shown in Fig. 1(b). The dark
(bright) center in the first (second) harmonic far-field
intensity distribution indicates out-of-phase (in-phase)
locking [37].
While a continuous system can have a continuum of

stable solutions, a discrete network has a finite number
[40]. For example, as shown in Fig. 1(c), a ring of 10
coupled lasers has 9 steady-state solutions, where the phase
of the laser m is ϕm ¼ eiqm2π=10 and q ¼ −4;−3;…;þ4 is
the topological charge of each solution. The q ¼ 0 in-phase
solution is globally stable, whereas the eight q ≠ 0 helical
phase solutions are only locally stable. The dissipative
coupling between lasers causes the system to converge to
steady-state solutions with minimal loss [16]. Solutions
with lower jqj have lower losses, but this loss difference
rapidly reduces with system size [26,37].
For ring networks of lasers to converge to a stable

solution, all lasers must be phase locked and fulfill periodic

boundary conditions. Yet, according to the Mermin-
Wagner theorem long-range order cannot exist in one-
dimensional systems in the thermodynamic limit [41].
Consequently, we limited our investigation to networks
with ≤30 lasers, and ensured that all lasers are phase locked
using a direct interference analysis [19,37].
To support and verify our experimental results, we

numerically solved the rate equations that characterize a
set of N single transverse and longitudinal modes class-B
lasers, which are coupled linearly to each other [42], as

dAm

dt
¼ðGm−αmÞ

Am

τp
þ

X

n¼ðmÞNN

κmn

τp
An cosðϕn−ϕmÞ; ð1Þ

dϕm

dt
¼ Ωm þ

X

n¼ðmÞNN

κmn

τp

An

Am
sin ðϕn − ϕmÞ; ð2Þ

dGm

dt
¼ 1

τc
½Pm −GmðjAmj2 þ 1Þ�; ð3Þ

where Am, ϕm, Gm, αm, Ωm, and Pm are the amplitude,
phase, gain, loss, frequency detuning, and pump strength of
laser m, τp denotes the cavity round-trip time, τc the carrier
lifetime, κmn the coupling coefficient between lasers m and
n, and n ¼ ðmÞNN the sum over laser m’s NN (nearest
neighbors) [43]. Coupling between higher order neighbor
lasers were negligible in our system. The coupled equations
[Eqs. (1)–(3)] were numerically solved with periodic
boundary conditions using the fourth-order Runge-Kutta
method, with our system parameters of τp ¼ 5.4 ns,
τc ¼ 230 μs, and αm ¼ 0.1. The distribution of detuning
was Ωm ≪ κmn=τp, as provided by our degenerate cavity
[14], ensuring that the coupling strength was well above the
critical value [27,29]. The values of κmn, Ωm, and Pm=Pth
(Pth is the threshold pump strength) [37] in the simulation
were determined by fitting to the experimental results.
If the amplitudes Am of all lasers are equal, Eq. (2)

reduces to the well-known Kuramoto equation of coupled
phase oscillators [14,18] as

dϕm

dt
¼ Ωm þ

X

n¼ðmÞNN

κmn

τp
sin ðϕn − ϕmÞ: ð4Þ

The Kuramoto model was successfully applied in many
areas such as populations of coupled oscillators [18],
complex networks [44], and coupled laser arrays [45].
We quantified topological defects by analyzing the

steady-state far-field intensity distributions measured after
SHG, as described above. For 10 lasers [Figs. 2(a)–2(c)],
the far-field intensity distribution has a clearly observable
bright central peak and distinct dark and bright rings,
indicating a nearly pure q ¼ 0 in-phase solution. For 20
lasers [Figs. 2(d)–2(f)], the far-field intensity distribution
has largely smeared dark and bright rings, manifesting
the presence of topological defects [19]. Because of the

FIG. 1. Experimental arrangement with representative results.
(a) Experimental arrangement; M1 (high reflectivity) and M2

(93% reflectivity) are cavity mirrors, L1 and L2 are plano-convex
lenses in a 4f telescope configuration, L3 and L4 are plano-
convex lenses in a demagnifying telescope configuration, KTP is
a nonlinear crystal for SHG, L5 is an imaging lens. The filter
transmits only the frequency-doubled wavelength. (b) Represen-
tative experimental results for a ring network of 10 lasers: (b1)
near-field intensity distribution, (b2) first harmonic far-field
intensity distribution, and (b3) second harmonic far-field intensity
distribution. (c) Calculated steady-state solutions of a ring net-
work 10 lasers for different topological charges q ¼ −4, −3, −2,
−1, 0, þ1, þ2, þ3, þ4.
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multiplicity of longitudinal modes in each laser, each
experimental realization corresponds to an ensemble aver-
age of many independent experiments, and directly pro-
vides the probability distribution of topological defects
[14]. We thus determined the probability of topological
defects by fitting the experimental radial intensity profiles
with the calculated profiles [19,37]. For 10 lasers, we
obtained 2% topological defects, whereas for 20 lasers, the
topological defects increased to 18% [46]. We repeated
this for various system sizes and the results are shown in
Fig. 3(a) (red circles).
To support our experimental results, we first integrated

the Kuramoto equation [Eq. (4)] with initial phases
randomly distributed between 0 and 2π, until a steady
state solution was reached and determined its q. We
repeated this for 5000 different random initial phases,
and determined the probability of globally stable (q ¼ 0)
and locally stable (q ≠ 0) solutions. We found that the
calculated probability of topological defects [green squares
in Fig. 3(a)], is much larger than that obtained in the
experiment [red circles in Fig. 3(a)], which demonstrates
the inherent limitations of the Kuramoto model.
The large discrepancy between the Kuramoto and

experimental results indicates that the coupled laser dynam-
ics provides an additional mechanism to unwind a topo-
logical defect. To confirm and clarify such a mechanism,
we resorted to the full laser rate equations [Eqs. (1)–(3)],
which also take into account variations and fluctuations of
the lasers amplitudes. For Pm=Pth ¼ 14.2 and κmn ¼ 0.01,
we obtained very good agreement between the simulated
[blue triangles in Fig. 3(a)] and the experimental results.
This suggests that laser amplitude dynamics indeed provide
a mechanism to suppress topological defects.

Since the amplitude dynamics is directly related to pump
strength [47], we also investigated the effect of pump strength
Pm on the probability of topological defects in the steady
state. The experimental results, presented in Fig. 3(b), are in
good agreement with the simulated results of laser rate
equations but not with the Kuramoto results.
The probability of topological defects increases with the

pump strength and approaches the Kuramoto results for
Pm=Pth → ∞, (when the Kuramoto assumption of uniform
amplitudes is fulfilled [14,29]). Alternatively, as Pm
approaches Pth, the effect of amplitude dynamics becomes
more significant [47]. The probability of topological
defects approaches zero and the system dissipates to the
globally stable solution. This agrees with recent results of
an OPO-based Ising machine [15], where Pm was shown to
link to temperature [34]. The generation of vortices as a
function of pump strength was also studied in a continuous
system via bifurcation [25].
The control over topological defects by the pump

strength and analogy with temperature can be put in the
context of the KZ mechanism, where the density of defects
scales with the cooling rate at which the phase transition is
crossed [4,5]. In analogy to Zurek’s approach, we identified
two competing time scales in our system, namely, the
synchronization time of laser amplitude fluctuations (tamp)
and the locking time of their phases (tphase). The synchro-
nization of intensity fluctuations in two coupled lasers was
investigated in the past [30,31]. To evaluate how these two
competing time scales depend on various laser parameters,
we simulated the dynamical behaviors of the amplitudes
and phases of the lasers using Eqs. (1)–(3).
The results of these simulations at two different pump

strengths, for a system of N ¼ 20 lasers, are shown in
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FIG. 2. Topological defects in ring networks of 10 (top row)
and 20 (bottom row) lasers. (a),(d) Experimental near-field
intensity distributions. (b),(e) Experimental far-field intensity
distributions after SHG. (c),(f) Experimental and calculated radial
intensity profiles of far-field intensity distributions after SHG.
The probability of topological defects is found to be 2% for 10
lasers, and 18% for 20 lasers.
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FIG. 3. Dissipative topological defects: (a) Probability of locally
stable topological defects (q ≠ 0) and globally stable in-phase
solution (q ¼ 0) as a function of system size. Red circles are
experimental results; blue triangles are numerical results with full
laser rate equations showing good agreement with the experimental
result; green squares are numerical resultswith theKuramotomodel
indicating much higher defect probability than in the experiment.
(b) For a ring network of 20 lasers, the probability of topological
defects as a function of normalized pump strength Pm=Pth. The
simulated results of the laser rate equations are in good agreement
with the experimental results while the Kuramoto model results
predict much higher defect probability. The coupling strength in the
simulation was κmn ¼ 0.01.
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Fig. 4. Figures 4(a) and 4(c) show the amplitude dynamics,
represented as normalized amplitude spread among the
lasers

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðAm − hAmiÞ2i

p
=hAmi, at Pm=Pth ¼ 16.7 and at

Pm=Pth ¼ 1.25. As evident, the initial amplitude fluctua-
tions decay much faster for high Pm=Pth [47]. In particular,
the time tamp, where the envelope of amplitude spread
reaches 0.01 is ∼15 times longer for low Pm=Pth
[48]. Figures 4(b) and 4(d) show the phase locking
dynamics, characterized by the order parameter rðtÞ ¼
jð1=NÞPN

m¼1 e
iϕmðtÞj [18]. For high Pm=Pth phase locking

is much slower than for low Pm=Pth and the tphase [the time
where rðtÞ reaches within 0.01 of its steady state value] is
∼23 times longer. In summary, at high Pm=Pth,
tamp ≪ tphase, whereas at low Pm=Pth, tamp ≫ tphase.
The amplitude fluctuations can be regarded as an

effective temperature [29] that is coupled to the phase
dynamics [Eq. (2)] and the phase locking time tphase
corresponds to the information exchange time. Hence,
for tamp ≪ tphase, the external cooling rate is much faster
than the internal information exchange rate, thereby pro-
moting the generation of topological defects in accordance
with the KZ mechanism. For tamp ≫ tphase, the fluctuating
amplitudes can “kick” the system out of the locally stable
solutions, allowing it to find the globally stable solution.
To generalize the relation between topological defects and

the competing time scales of the system,we also analyzed the
probability of topological defects for different coupling
strengths. For each coupling strength, we varied the pump

and calculated the two time scales htampi and htphasei,
averaged over 1000 random initial conditions. The results
are shown in Fig. 5. As evident, the probability of topological
defects grows as htampi decreases [Fig. 5(a)] and as htphasei
increases [Fig. 5(b)]. Nevertheless, each of the two time
scales depends on the system size. When the probability of
topological defects is plotted as a function of ht0.6phasei=htampi
all trajectories collapse to a single curve [Fig. 5(c)]. Such data
collapse indicates universality in the system as in theKZ. The
results in Figs. 5(a) and 5(b) are consistent with the trends
reported earlier for small systems [30,31].
In conclusion, we investigated dissipative topological

defects in 1D ring networks of lasers, and showed how they
are linked to the KZ mechanism. The probability of topo-
logical defects increaseswith system size and pump strength.
The formation of topological defects depends on two
competing time scales, namely, phase locking time and
the synchronization time of amplitude fluctuations, in agree-
ment with the KZ mechanism. We observed universality in
the system where the probability of topological defects
depends only on a single parameter related to the ratio
between the two competing time scales. As opposed to the
KZ mechanism where the system is cooled by an external
heat bath, in our ring networks of lasers the amplitude
fluctuations act as an internal heat bath that is coupled to the
phases. We demonstrated the inherent limitations of many
models of coupled oscillators that take into account only the
phase dynamics, widely used in various fields. Our findings
are important to the emerging field of using coupled coherent
oscillators to simulate quantum systems. Furthermore, we
plan to extend our work to 2D discrete systems, and show
closer analogy to the KZ mechanism.

The authors acknowledge partial support from the
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Budgeting Committee Fellowship Program.
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FIG. 4. Simulated dynamical behaviors of the laser amplitudes
and phases at two different pump strengths, for a ring network of
N ¼ 20 lasers. The amplitude spread and phase order parameter
are shown as a function of time for pump strength Pm=Pth ¼ 16.7
in (a) and (b), and for Pm=Pth ¼ 1.25 in (c) and (d) with the same
initial conditions and coupling strength κ ¼ 0.001. The arrows
denote the amplitude synchronization time (tamp) and phase
locking time (tphase). When tamp ≪ tphase, the system is stuck
in a locally stable state with q ≠ 0 (top), and when tamp > tphase,
the system reaches the globally stable state q ¼ 0 state (bottom).
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coupling strength, every point on the curves corresponds to
different pump strength. All trajectories collapse to a single curve,
indicating universality in the system.
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