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Strong nonlinearity at the single photon level represents a crucial enabling tool for optical quantum
technologies. Here we report on experimental implementation of a strong Kerr nonlinearity by
measurement-induced quantum operations on weak quantum states of light. Our scheme coherently
combines two sequences of single photon addition and subtraction to induce a nonlinear phase shift at
the single photon level. We probe the induced nonlinearity with weak coherent states and characterize the
output non-Gaussian states with quantum state tomography. The strong nonlinearity is clearly witnessed as
a change of sign of specific off-diagonal density matrix elements in the Fock basis.

DOI: 10.1103/PhysRevLett.119.013601

Nonlinear optical interactions represent a major tool for
generation andmanipulation of optical fields in both classical
and quantum domains, and they form a basis of countless
photonics devices. The envisioned applications of nonlinear
interactions in quantum optics and optical quantum infor-
mation processing often require strong nonlinear coupling
between single photons.However, such ultrastrong nonlinear
interactions are not readily available, because the typical
nonlinearities of common nonresonant optical media are
many orders of magnitude weaker than what is required to
achieve an appreciable nonlinearity at the single-photon
level. A significant progress towards giant optical non-
linearities at the few-photon level has been made during
recent years due to intensive experimental and theoretical
efforts [1–15]. However, those experimental approaches are
extremely complex and challenging as they require specially
tailoredmediawith enhanced nonlinearities such as clouds of
ultracold atoms.Moreover, severalworks pointed out that the
very nature of light-matter interaction may prevent achieve-
ment of a sufficiently strong Kerr nonlinearity in certain
configurations for weak quantum optical fields [16,17].
In 2001, Knill, Laflamme, and Milburn in their landmark

paper showed that effective nonlinear interactions at the
single-photon level can be implemented with the use of
optical interference, single photon detection, and auxiliary
single photons [18]. In this approach, the single photon
detection provides the desired nonlinearity. The resulting
linear optical quantum gates are generally probabilistic,
as implied by the fact that they are driven by quantum
measurements, but their success probability can be boosted
arbitrarily close to 1 by usingmore ancilla photons andmore
complex interferometric schemes [18,19]. This concept has
triggered an immense amount of theoretical and experimen-
tal work, which lead to demonstration of various quantum
gates for single-photon qubits [20,21]. This concept has also

been extended to Gaussian operations on continuous-
variable states of light [22], where it was demonstrated that
a squeezing operation can be implemented using an auxiliary
source of squeezed states, interference, homodyne detection,
and feedforward [23]. Similarly, a quantum-noise limited
phase insensitive amplification has been implemented solely
by a homodyne detection and feedforward [24].
A fundamental nonlinear interaction is represented by a

Kerr nonlinearity, which leads to dependence of the
refractive index on the intensity of light that propagates
through the nonlinear medium. At the quantum level, this
nonlinearity is described by a Hamiltonian which is a
quadratic function of the photon number operator n̂,

Ĥ ¼ ℏκâ†2â2 ¼ ℏκn̂ðn̂ − 1Þ: ð1Þ

The resulting unitary transformation of the quantum state of
the optical mode is diagonal in the Fock basis, which means
that each Fock state jni acquires a phase shift which is a
nonlinear function of n,

jni → e−iΦnðn−1Þjni; ð2Þ

where Φ ¼ κt. Strong Kerr nonlinearity with Φ ≈ 1 would
enable, e.g., generation of macroscopic superpositions of
coherent states [25], implementation of entangling quan-
tum gates for universal quantum computing [26], and
complete Bell state measurement in quantum teleportation
[27,28].
Here we report on the experimental implementation of a

strong Kerr nonlinearity by measurement-induced quantum
operations on weak quantum states of light. Specifically, we
emulate this interaction on the smallest nontrivial subspace
spanned by the vacuum, single-photon, and two-photon
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states, j0i, j1i, and j2i. In this subspace, the Kerr interaction
transforms a generic input state according to

e−iĤt=ℏðc0j0i þ c1j1i þ c2j2iÞ
¼ c0j0i þ c1j1i þ e−2iΦc2j2i: ð3Þ

We target a Kerr nonlinearity with Φ ¼ π=2, which
induces a π-phase shift of the two-photon Fock state with
respect to states j0i and j1i. Up to a linear π-phase shiftwhich
flips the sign of odd Fock states, and an unimportant overall
phase factor −1, this is equivalent to a π-phase shift in the
amplitude of the vacuum state on the three-dimensional
subspace considered, i.e.,

c0j0i þ c1j1i þ c2j2i → −c0j0i þ c1j1i þ c2j2i: ð4Þ

The change of sign in the amplitude of thevacuumcomponent
is thus the signature of the strong Kerr nonlinearity that we
wish to demonstrate in our experiment. We do this by using
weak coherent states as the input of an approximate Kerr
Hamiltonian implemented with coherent superpositions of
sequences of photon additions and subtractions [29] [see
Fig. 1(a) for a schematic view of the experiment].
Conditional photon subtraction is usually implemented

with the help of a highly unbalanced beam splitter and a
single-photon detector, whose click heralds successful
photon subtraction, which is mathematically described
by the annihilation operator â [30–32]. To conditionally
add a single photon, the input light beam is sent to a signal
input port of a nonlinear crystal, where parametric down-
conversion takes place. Detection of a photon in the output
idler port of the crystal heralds the generation of a twin

photon in the signal mode, and this operation can be
described by the action of a creation operator â† [33]. Since
the creation and annihilation operators do not commute, the
sequences ââ† and â†â represent two different operations,
as verified experimentally [32].
An interferometric scheme allows us to implement

arbitrary coherent superpositions of these two elementary
sequences, Aââ† þ Bâ†â by erasing the information
whether the photon subtraction took place before or after
the photon addition. Taking into account that â†â ¼ n̂ and
ââ† ¼ n̂þ 1, we can thus design an arbitrary operation
which is a linear function of the photon number operator,
Vðn̂Þ ¼ ðAþ BÞn̂þ A. We already demonstrated the reli-
ability of such a scheme for the first direct experimental
verification of the bosonic commutation rules [34] and for
the realization of a quantum state orthogonalizer [35].
Here, we want to conditionally implement the gate of

Eq. (4) by means of the transformation VðnÞ; therefore,
we need to set Vð1Þ=Vð0Þ ¼ −1 and Vð2Þ=Vð1Þ ¼ 1.
Although these conditions cannot be satisfied for any
A and B, we can make our task feasible by allowing
for a simultaneous noiseless amplification [36] of the
output state,

c0j0i þ c1j1i þ c2j2i → −c0j0i þ gc1j1i þ g2c2j2i; ð5Þ

where g > 1 is a gain factor. The equations Vð1Þ=Vð0Þ ¼
−g and Vð2Þ=Vð1Þ ¼ g now possess a nontrivial solution
B=A ¼ −3 −

ffiffiffi

2
p

, which yields g ¼ ffiffiffi

2
p þ 1. If wishing to

achieve the nonlinearity of Eq. (4) without amplification,
one could either use two photon subtractions and additions
instead of one [37], or the output state of Eq. (5) could be
noiselessly attenuated [38,39] with the help of a beam
splitter with amplitude transmittance t ¼ 1=g, a highly
efficient single-photon detector, and conditioning on obser-
vation of no photons at the auxiliary output port of the beam
splitter. With the advent of superconducting single-photon
detectors, whose efficiencies exceed 90%, implementation
of high-quality noiseless attenuation appears to be feasible
[40–42]. Note, however, that the additional noiseless
amplification in Eq. (5) does not spoil the signatures of
nonlinearity. On the contrary, it is actually beneficial,
because we intend to probe the quantum operation with
weak coherent states and the amplification makes the
observed nonlinear effect even more visible.
The experiment requires the precise and stable setting

of the relative weights and phases of the operator super-
position to implement the desired conditional transforma-
tion, which is then tested by using a set of weak coherent
states as the input. The resulting output states are subjected
to balanced homodyne detection and finally analyzed via a
full quantum state tomographic reconstruction.
Differently from the previous realizations based on a bulk

fiber optic interferometer [34], here we choose to exploit the
polarization degree of freedom for realizing a more compact

(a)

(b)

FIG. 1. Experimental setup. (a) Schematic view of the main
blocks used for implementing arbitrary coherent superpositions
of sequences of conditional photon additions and subtractions.
(b) Detailed view of the experimental setup, based on different
polarization modes for interferometric stability. All symbols are
defined in the text.
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and phase-stable setup that enables us to meet the stringent
requirements on the operator superposition. Figure 1(b)
shows a more detailed view of the experimental setup. A
mode-locked Ti:sapphire laser emitting 1.5 ps long pulses at
786 nm is frequency doubled to pump the 3-mm long bulk
β-barium borate (BBO) crystal for frequency-degenerate,
noncollinear parametric down-conversion (PDC). A small
part of the laser emission constitutes, after proper attenuation,
the input coherent states jαi that are injected in the signal
mode of the PDC crystal for conditional photon addition,
heralded by clicks in the avalanche photodiode (APDA)
placed after narrow spectral and spatial filters (F) in the idler
mode. Two half-wave plates (HWP) are placed in the signal
mode, respectively, before and after the PDC crystal. If the
two plates are rotated by very small angles, then each HWP
transfers a tiny portion of the signal light into the orthogonal
polarization component, which does not contribute to PDC
and is detected after a polarizing beam splitter (PBS) by
another avalanche photodiode (APDS). A click of this

detector thus heralds subtraction of a single photon from
the signal pulse that could have occurred either before or after
photon addition. The relative (real) amplitudes of the terms
ââ† and â†â in the superposition heralded by a coincidence
between APDA and APDS can be finely controlled by
rotating the two HWPs by different angles.
In order to prepare complex superpositions, one might

add a quarter wave plate right after the first HWP, but this is
not necessary for the present experiment. However, we do
add a compensating BBO crystal (not shown in the figure
for simplicity) to cancel the spatiotemporal walk-off of the
two orthogonally polarized pulses (and thus the partial
distinguishability between the two “subtraction” beams)
due to the birefringence of the PDC crystal.
This polarization-based scheme is inherently interfero-

metrically stable because the main polarization component
of the signal light pulse and the orthogonally polarized
subtraction pulses follow the same path until they are
separated by the PBS. After the PBS, the signal pulse is

FIG. 2. Reconstructed density matrices of input coherent states and output states after the emulated Kerr nonlinear interaction. The left
column shows the real part of the reconstructed density matrices of the input coherent states (the imaginary part is negligible here). For
each input state, the two central columns show the real and imaginary parts for the reconstructed output states (upper plots), together
with those calculated from a best fit of the parameters in the applied Vðn̂Þ transformation (lower plots). The corresponding fidelities are
F ¼ 0.88, 0.86, 089 for α ¼ 0.23, 0.53, 0.79, respectively. Finally, the right column shows the expected output states (containing no
imaginary parts) that one would obtain from the ideal Vðn̂Þ transformation with B=A ¼ −3 −

ffiffiffi

2
p

.
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directed towards a time-domain balanced homodyne detec-
tor [43,44] using another portion of the laser emission as
the reference local oscillator pulses. The detector thus
acquires phase-dependent quadrature data corresponding to
the input coherent states jαi in its free-running mode,
whereas APDA-APDS coincident clicks herald quadrature
measurements on the conditional output states.
A full tomographic reconstruction is performed on the

input and output states for three different values of the input
coherent state amplitude, α ¼ 0.23, 0.53, and 0.79. We use
an iterative maximum likelihood procedure [45–47] incor-
porating the effect of a finite (ηdet ¼ 0.66) detector effi-
ciency to reconstruct the density matrices in a 8 × 8 space
in the Fock basis. The reconstructed density matrices are
shown in Fig. 2 together with those calculated by applying
the Vðn̂Þ operator on the input coherent states.
The desired Kerr nonlinearity signature is evident in all

the experimental data. All the off-diagonal terms containing
a vacuum contribution are clearly negative, witnessing the
expected sign change in the amplitude of the vacuum
component. However, when comparing the experimental
density matrices to those expected according to the Vðn̂Þ
transformation with ideal parameters B=A ¼ −3 −

ffiffiffi

2
p

(rightmost column in Fig. 2), some discrepancy is apparent.
The most notable is the appearance of a small imaginary
component. We find that all the experimental results can be
reproduced very well by using a single set of modified
parameters in the Vðn̂Þ transformation, corresponding to a
B=A ratio of −5.97 and to an additional phase of about
−π=7 between the two terms in the operator superposition.
Such small deviations from the ideal configuration, which
only marginally affect the signatures of the sought non-
linearity, are fully compatible with the delicate alignment
and setting of the proper small rotation angles in the wave
plates responsible for the operator superposition.
It is instructive to compare our schemewith the nonlinear

sign gate proposed by Knill, Laflamme, and Milburn
(KLM) [18], which is schematically depicted in Fig. 3.
The nonlinear sign gate conditionally implements the
transformation (4) and requires one auxiliary input single
photon. To make a fair comparison with our setup, we
include in Fig. 3 a source of single photon states based
on generation of correlated photon pairs in the process of
spontaneous parametric down-conversion in a nonlinear
crystal followed by heralding detection of the idler photon.
The nonlinear sign gate involves interference of the input
signal mode with the auxiliary single photon in a three-port
interferometer composed of three unbalanced beam split-
ters with suitably chosen transmittances. Single photon
detectors monitor the two auxiliary output ports of the
interferometer and successful implementation of the gate
(4) is heralded if a single photon is detected by APDB and
no photon is detected by APDC.
We can see that the setup shown in Fig. 3 and our scheme

depicted in Fig. 1 require comparable resources, namely

production of one auxiliary photon pair in a nonlinear
crystal and detection of two single photons. However, the
nonlinear sign gate in Fig. 3 requires perfect photon
number resolving detectors for reliable operation, while
with our present approach a high-fidelity implementation of
the transformation (5) can be achieved even with ordinary
imperfect on-off avalanche photodiodes. Note that the
scheme in Fig. 3 also requires projection of one output
auxiliary mode onto vacuum. In our scheme in Fig. 1 this
additional ingredient of projection onto vacuum could be
used for noiseless attenuation of the output signal mode,
which would allow us to implement the exact nonlinear
sign gate (4) instead of its amplified version (5).
In conclusion, we have successfully demonstrated a

heralded scheme based on sequences and superpositions
of single-photon additions and subtractions that is able to
emulate the action of a strong Kerr nonlinearity on quantum
states of light. We tested it on various weak coherent states
and showed the clear expected signature of the operation,
consisting in the selective change in the sign of the vacuum
component. The nonlinear nature of the interaction pre-
vents the use of multiport-schemes to implement the strong
Kerr nonlinearity for higher-intensity coherent states, by
splitting and then recombining them as proposed in
Refs. [48–50]. Instead, higher-order photon addition and
subtraction operations would need to be used at this
purpose in a more complex setup. In contrast to linear-
optical quantum gates for single-photon qubits [20,21], our
scheme is not restricted to single-photon inputs, but we
have shown it to work for arbitrary superpositions of Fock
states while preserving the quantum coherence.
Although the original KLM proposal [18] is heralded

and scalable, the subsequent experimental demonstrations
of various linear optics quantum gates had to resort to post-
selection due to the lack of perfect single photon sources

FIG. 3. Nonlinear sign gate proposed by Knill, Laflamme,
and Milburn [18]. The scheme consists of beam splitters, single-
photon detectors, a mirror (M), and a nonlinear crystal (NLC)
pumped by a strong laser beam (pump). The input and output
signal ports are labeled by in and out, respectively. Successful
gate operation is heralded by detection of a single photon by
detectors APDB and APDD while no photon should be detected
by APDC.
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and detectors. Here the scheme is not based on postse-
lection, and the successful implementation of the operation
(5) is heralded solely by measurements on auxiliary modes,
thus making the output state available for further process-
ing and applications.
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