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We analyze the quantum dynamics of periodically driven, disordered systems in the presence of long-
range interactions. Focusing on the stability of discrete time crystalline (DTC) order in such systems, we
use a perturbative procedure to evaluate its lifetime. For 3D systems with dipolar interactions, we show that
the corresponding decay is parametrically slow, implying that robust, long-lived DTC order can be
obtained. We further predict a sharp crossover from the stable DTC regime into a regime where DTC order
is lost, reminiscent of a phase transition. These results are in good agreement with the recent experiments
utilizing a dense, dipolar spin ensemble in diamond [Nature (London) 543, 221 (2017)]. They demonstrate
the existence of a novel, critical DTC regime that is stabilized not by many-body localization but rather by
slow, critical dynamics. Our analysis shows that the DTC response can be used as a sensitive probe of
nonequilibrium quantum matter.
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Introduction.—Understanding and controlling nonequi-
librium quantum matter is an exciting frontier of physical
science. While periodic driving has long been used to
control the properties of quantum systems, it was only
recently realized that periodically driven (Floquet) systems
can also host new states of matter that are not possible in
equilibrium. In particular, this is possible in a class of
driven disordered systems exhibiting many-body localiza-
tion (MBL) [1], called Floquet-MBL systems, which avoid
unbounded heating to an infinite temperature [2–4]. The
latter is generally expected to befall all ergodic isolated
systems due to external driving [5–7].
One remarkable example of a novel, nonequilibrium

phase of matter is the recently introduced discrete time
crystal (DTC) [8–11], which is characterized by a sponta-
neously broken discrete time-translation symmetry of the
underlying drive. In such systems, physical observables
exhibit robust oscillations with a period that is an integer
multiple of the underlying driving period T. Indeed, key
signatures of such robust DTC order have been observed in
two recent experiments [12,13]. In particular, one of these
realizations involved a disordered ensemble of ∼106 spins
associated with nitrogen-vacancy (NV) centers in diamond,
which interact between themselves via dipolar couplings
[13]. The origin of apparent robustness of the observedDTC
order in such a system [13], however, has not been fully
understood. Although this system is disordered due to the
random positions of the NV centers in 3D, the long-range
dipolar interactions are believed to preclude localization
[14–18]. Moreover, a prethermal regime of the DTC [19]
was also ruled out [13], since in the experiment the initial
polarized state is effectively at an infinite temperature with
respect to the effective Hamiltonian due to the randomly
varying signs of the dipolar interactions. Since neither

localization nor prethermalization are likely themechanisms
that stabilize the DTC order, this raises important questions
about the origin of the observed robust DTC response.
This Letter develops a theoretical treatment of DTC

order in systems with long-range interactions. We utilize a
perturbative approach to analyze the interplay of long-
range interactions, periodic driving, and positional disorder
of spins. Focusing on dipolar systems in 3D, we show that,
although DTC order is only transient, it can persist for
asymptotically long times with a strongly suppressed
thermalization rate. This behavior is intrinsically connected
to the slow thermalization dynamics of disordered dipolar
systems in 3D, which has been previously shown to be
consistent with the so-called critical regime [14,20] without
a periodic drive. As a function of experimental parameters,
we find that the relaxation time shows a sharp crossover
between a regime where the DTC response is robust and a
regime where it decays rapidly. This crossover is reminis-
cent of a phase transition, thereby allowing us to obtain the
effective phase diagram of the DTC which is in good
agreement with experimental results. Thus, our work
provides an explanation of the recent experimental obser-
vations [13] and also demonstrates the possibility of the
DTC in systems with critical dynamics, a regime which
we refer to as “critical time crystals.” Furthermore, our
perturbative approach can be used to study the nonequili-
brium properties in other driven disordered systems with
long-range interactions.
Our key results can be understood by considering a simple

spin model that describes an ensemble of dipolar interacting
NV centers, used in the experiments of Ref. [13]. Using
strong microwave excitations, the effective Ising inter-
actions between spins were engineered, described by the
following Hamiltonian:
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H0 ¼
X
i

ΩSxi þ
X
i;j

Jij
r3ij

Sxi S
x
j ; ð1Þ

where S⃗i ¼ ðSxi ; Syi ; Szi Þ are Pauli spin-1=2 operators, Ω the
strong microwave driving along x̂, Jij the orientation-
dependent coefficient of dipolar interactions with typical
strength J0, and rij the distance between spins i and j. We
assume that the spin-1=2 particles are randomly distributed
in three-dimensional space with density n0 and neglect
coupling to the environment [Fig. 1(a)]. DTC order was
observed by interrupting the evolution under Hamiltonian
(1) with rapid, global pulses that rotate the spin ensemble
along the ŷ axis by an angle π þ ε. The corresponding
Floquet unitary is given by

UF ¼ exp

�
−i
X
i

ðπ þ εÞSyi
�
exp ½−iH0τ1�; ð2Þ

where τ1 is the period for which the spins are allowed to
interact. In the experiment, the period is chosen such that
Ωτ1 ¼ 2πn, and thereforeΩ can effectively be taken to be 0
in Eq. (1). When the system is initialized in a state where all
spins are polarized along the þx̂ direction, a nontrivial
temporal response may be revealed by measuring the
average polarization Pðnτ1Þ of the ensemble along x̂ after
n Floquet cycles or, equivalently, qðnÞ≡ ð−1ÞnPðnτ1Þ,
which serves as an order parameter for the DTC phase.
The stability of the DTC order can be ascertained by
studying the decay rate of qðnÞ for a large number of cycles
as a function of τ1 and ε.
In order to describe the dynamics of qðnÞ, we

move into a so-called toggling frame, which rotates by
Pπ ≡Q

j exp ½−iπSyj � each time a global pulse is applied to

the system. Since PπSxi ðPπÞ−1 ¼ −Sxi , the 2τ1-periodic
oscillation in Pðnτ1Þ naturally appears as a time-
independent spin polarization in this new frame. The
dynamics of the system is then described by the Floquet
unitary ŪF ¼ exp ½−iPiεS

y
i � exp ½−iH0τ1� or, equivalently,

by an effective time-dependent Hamiltonian

HðtÞ ¼
X
ij

Jij
r3ij

Sxi S
x
j þ ε

X
i

Syi
X
n

δðt − n−τ1Þ: ð3Þ

Thus, our problem reduces to studying the depolarization
dynamics of an initialized polarized spin ensemble under
the time evolution of HðtÞ.
Physical picture.—The essence of our analysis is to

study resonant spin dynamics that lead to depolarization
perturbatively in ε while accounting for energy exchanges
provided by the external drive. In particular, sinceP

nδðt − n−τ1Þ ¼ 1
τ1

P
me

imω0t, the pulsed periodic spin
rotations can be viewed as a spin excitation with harmonics
of the fundamental frequency ω0 ≡ 2π=τ1 and fixed mag-
nitude ε=τ1. While this driving allows energy absorption
and emission in integer multiples of ω0, the interplay of
strong interactions and positional disorder suppresses direct
energy exchanges such that typical spins depolarize only
via indirect higher-order processes in ε.
Let us first consider the case without perturbations,

i.e., ε ¼ 0. Then the polarization of each spin along
x̂ is conserved. When all spins are initially polarized,
each spin therefore experiences a mean-field potential
hi ≡P

j≠iðJij=r3ijÞhSxji. Because of the random positioning
of spins, the strength of hi is also random with zero mean
and variance W2 ¼ h1

4
ðPj≠iJij=r

3
ijÞ2i, where h·i denotes

averaging over different positions.
When ε ≠ 0, there is depolarization due to spins experi-

encing a time-varying on-site field along the ŷ axis. Let us
therefore consider the first-order process where spins
individually flip due to the action of this field. If a spin
experiences a strong mean-field potential hi compared to
the applied field, that is, if hiτ1 ≫ ε, then it does not flip—
it experiences an effective field that is approximately
pointing along the x̂ axis and therefore precesses around
it without significant depolarization. On the other hand, if
hiτ1 is close to an integer multiple of 2π, then the spin
rotates along the ŷ axis and depolarizes. Physically, this
corresponds to an effectively resonant excitation of (indi-
vidual) spins that arises when one of the driving harmonics
is tuned close to their energy: jhi −m�ω0j < ε=τ1 for some
optimal integer m� [see Fig. 1(b)]. Such resonances occur
with a small probability in the limit of ε ≪ Wτ1 and
amount to a reduction of the total polarization by a constant
factor proportional to ε=½minðW;ω0Þτ1�. However, if
ε ∼Wτ1, a substantial fraction of spins rapidly depolarize
due to resonant processes shown in Fig. 1(b). Note that the
phenomenological phase boundary extracted in Ref. [13],
based on the existence of self-consistent closed spin

(a)

(c) (d)

(b)

E
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y

FIG. 1. (a) Ensemble of randomly positioned spins in 3D
interacting via dipolar interactions. (b) Illustration of single-spin-
flip processes. (c),(d) Energy level diagram for the second-order
process of two spins flipping, in two regimes: (c) high frequen-
cies (ω0 ≫ W) and (d) low (ω0 ≪ W) frequencies. The applied
field flips a spin with magnitude ε=τ1, which costs energy
∼hI −m�ω0.
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trajectories, is consistent with the perturbative condition
ε ≪ Wτ1.
We next focus on the second-order process illustrated in

Figs. 1(c) and 1(d) in which a pair of spins I and J
simultaneously flip their polarizations while exchanging
their energies with each other and with the external drive.
Such processes are resonant when

ΔIJ ≈ jhI þ hJ −m�ω0j < JeffIJ ; ð4Þ
where hI and hJ are effective on-site potential for spins I
and J, respectively,m� is the optimal harmonic number that
minimizes the energy difference, and JeffIJ is the effective
amplitude of the pair-flip process. The amplitude JeffIJ

JeffIJ ∼
�
ε

τ1

�
2 JIJ
r3IJ

�
1

δ2I
þ 1

δ2J

�
; ð5Þ

can be estimated from the interference of two paths in the
second-order perturbation theory, as illustrated in Figs. 1(c)
and 1(d). Here δIðJÞ ≡minl� ðhIðJÞ − l�ω0Þ is the energy
difference between initial or final states and intermediate
virtual states, up to extra energy provided by a driving
harmonic l�. We find that JeffIJ is an effective long-range
interaction decaying as ∼1=r3IJ allowing the flipping of
remote spin pairs.
The resonance condition (4) is sensitive to ω0 and

behaves qualitatively differently in two limiting cases:
(i) ω0 ≫ W and (ii) ω0 ≪ W [see Figs. 1(c) and 1(d)].
In the former case, the optimal choice is m� ¼ l� ¼ 0,
since spins cannot absorb or emit such a large energy ω0. In
the latter case, effective energy differences (both ΔIJ and
δI, δJ) are bounded by ω0, as the external drive can always
compensate energy in units of ω0. These considerations
yield the scaling JeffðrÞ ∼ CJ0=r3 with

C ≈
� ðε=τ1WÞ2 for ω0 ≫ W;

ε2 for ω0 ≪ W;
ð6Þ

and the effective range Weff of the energy differences
ΔIJ becomesWeff∼W forω0≫W andWeff∼ω0 forω0 ≪ W.
We now estimate the probability that a given spin finds a

resonant partner within a ball of radius R. This is obtained
by integrating the probability of finding such a partner in a
shell R and Rþ dR:

dP ¼ ½JeffðRÞ=Weff �n04πR2dR; ð7Þ
from a short distance cutoff a0 to R, which gives
PðRÞ ∼ logðR=a0Þ. Here the first factor in Eq. (7) is the
probability of satisfying Eq. (4), and the second factor is the
average number of spins within a shell of size R with
the density n0. As this probability diverges, it implies that
pairwise spin flips prevail, and the system thermalizes, with
the DTC order slowly decaying over time. We can extract
the time scale associated with these pair-spin-flip processes
using the typical distances R� of resonant spin pairs.
Solving PðR�Þ ∼ 1 gives R� ≈ a exp ½Weff=4πCJ0n0�.

Finally, the effective depolarization rate is estimated from
the interaction strengths of typical pairs, i.e., ~Γ ∼ JeffðR�Þ,
leading to the decay rate per Floquet cycle Γ≡ ~Γτ1:

Γ ∼

8><
>:

J0ε2

a3
0
τ1W2 exp

h
− 3W3τ2

1

4πJ0n0ε2

i
for ω0 ≫ W;

J0ε2τ1
a3
0

exp
h
− 3

2J0n0ε2τ1

i
for ω0 ≪ W:

ð8Þ

This exponentially slow in 1=ε2 decay of the DTC order is a
central result of the present Letter and is a direct consequence
of critically slow thermalization of dipolar systems in 3D
[20,21]. Interestingly, the depolarization is exponentially
sensitive to the parameters τ1 and ε in two distinct ways: In
regime (i) Γ is a function of τ21=ε

2, while in regime (ii) it
depends only on 1=ε2τ1. These considerations allow us to
identify an effective phase boundary using the criteria τ21=ε

2 ¼
A or 1=ε2τ1 ¼ B with some constants A and B. Remarkably,
this boundary illustrated in Fig. 2 captures the key
features observed in the experiment [13]: the linear growth
of ε for short τ1 and the slowdiminishing of ε at longer τ1 [22].
Technical procedure.—We now outline the technical

procedure that formalizes the above discussion (see [23] for
details). The key idea is to identify a time-dependent
unitary transformation of the Hamiltonian HðtÞ such that
nonresonant single spin flips are essentially “integrated
out” and only residual two-spin-flip processes become
dominant terms in the effective Hamiltonian H0ðtÞ. More
specifically, we start from the Hamiltonian (3), with H0

representing the Ising interactions and V the applied
field, and perform a time-periodic unitary transformation
Qðtþ τ1Þ ¼ QðtÞ, which gives rise to

H0ðtÞ ¼ QðtÞ†
�
H0 þ εV

X
n

δðt − n−τ1Þ − i∂t

�
QðtÞ: ð9Þ

Our goal is to eliminate terms that are linear in ε
from H0ðtÞ. Following Ref. [4], we look for QðtÞ of
the form QðtÞ ¼ eεΩðtÞ with anti-Hermitian operator

FIG. 2. Phase diagram of the DTC obtained numerically (see
[23] for details). Dotted lines indicate limiting behaviors of the
phase boundary: At high driving frequencies, the phase boundary
is linear, τ1 ∝ jεj, while for low driving frequencies, it closes up
as τ1 ∝ 1=ε2; cf. Eq. (8). This is in good agreement with the
experimental observations of Ref. [13].
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ΩðtÞ ¼ P
nΩðnÞeinω0t. Expanding Eq. (9) in powers of ε

and requiring that the OðεÞ term equals 0 gives an equation
for the nth Fourier mode ΩðnÞ:

V
τ1

− ½ΩðnÞ; H0� þ nω0ΩðnÞ ¼ 0: ð10Þ

The matrix elements of the operator Ω̂ðnÞ can be computed
in the eigenstate basis jsi of H0 (which is a product state
basis in Sxi operators):

hs0jΩðnÞjsi ¼ hs0jVjsi
ðEs − Es0 − nω0Þτ1

: ð11Þ

Noting that V ¼ P
iS

y
i , the operator ΩðnÞ has nonzero

matrix elements only between spin configurations s and
s0 that differ by one spin flip. If jsi and js0i differ by the
value of spin I, Es − Es0 ¼ 2

P
j≠IðJjI=r3jIÞSxjðsÞSxI ðsÞ ¼

2hISxI . We assume that the on-site field hI is random (due to
positional disorder and the orientation dependence of Jij)
and sufficiently strong such that resonances are rare; i.e.,
the denominator in (11) typically does not diverge and the
procedure controlled. Then, the rotated Hamiltonian to
second order becomes

H0ðtÞ ¼ H0 −
ε2

2
½ΩðtÞ; V�

X
n

δðt − n−τ1Þ: ð12Þ

A straightforward calculation [23,24] using expression (11)
gives an effective Hamiltonian of the following form:

H0ðtÞ¼H0þ
X
IJ

AIJJIJ
r3IJ

ðSþI SþJ þH:c:Þ
X
n

δðt−n−τ1Þ; ð13Þ

where SþI ≡ ðSzI þ iSyI Þ=
ffiffiffi
2

p
is the spin-raising operator in

the SxI basis for spin I and AIJ is the coefficient

AIJ ≈ −2SxI ðsÞSxJðsÞ
�
ε

τ1

�
2
�
1

~δ2I
þ 1

~δ2J

�
; ð14Þ

where we introduced the notation ð1=~δ2JÞ ¼P
l½1=ðhJ − lω0Þ2�.
The effective Hamiltonian (13) contains the larger

disordered part H0 and long-range terms which can flip
pairs of spins; the latter are suppressed proportional to ε2,
leading to slow relaxation. From Eq. (14), it is evident that
the amplitudes for flipping a pair of spins depend on hI , hJ,
which in turn are determined by the positions of the spins.
Assuming that hI , hJ take typical values of the orderW and
taking the contribution of the harmonic l� for which
hJ − lω0 is minimized (this gives the leading contribution
to ~δJ), the expression (14) for the two-spin-flip amplitude
reduces to the estimate (5) above.
We emphasize that the above unitary transformation

is distinct from the rotating frame transformations employed
to derive effective Hamiltonians in the high-frequency
limit [25,26]. Rather, it utilizes the randomness of our

Hamiltonian in order to effectively integrate out nonresonant
single-spin-flip processes.
Phase diagram.—Using the effective Hamiltonian

approach described above, we obtain the phase diagram
of the critical DTC. To improve upon the estimates for
Γðε; τ1Þ, we take into account the fact that the distribution
of the potential hi stems from the positional randomness of
spins and numerically sample hi from a distribution of 2000
spins in a 3D region with density 9.26 × 10−3 nm−3 with a
short distance cutoff of 3 nm [20].
While Eq. (8) already provides analytical predictions for

the decay rate Γ by estimating the typical distance R� of
resonant spin pairs, in numerics we find it more amenable
to estimate Γ from an explicit depolarization in time profile;
the counting arguments in Eq. (7) predicts a power-law
decay of polarization qðnÞ, from which the decay time scale
1=Γ is extracted by equating qðnÞ to a small threshold [23].
The phase boundary is then identified from a criterion
Γðε; τ1Þ ¼ Γ� ¼ 1=100.
This approachyields the phase diagram illustrated in Fig. 2,

which is in very good agreement with the experimental
observations [13,27]. At a high driving frequency, the
boundary approximately follows a relation τ1 ∝ jεj (also
obtainable using a semiclassical argument), while at low
frequency τ1 ∝ 1=ε2, which indicates that DTC order
becomes less stable as τ1 is increased, due to the fact that
multiphoton processes lead to faster depolarization. TheDTC
phase is most robust in the crossover regime, where ω0 ∼W.
We also note that, strictly speaking, DTC order has a

finite relaxation rate at any ε ≠ 0; τ1 ≠ 0. However, we find
that the relaxation rate Γ increases very sharply at a certain
value of ε, as illustrated in Fig. 3, which matches the
experimental observations and is reminiscent of a phase
transition. Note, however, that, unlike for a true phase
transition, this increase does not become infinitely sharp
even in the thermodynamic limit.
Summary and discussion.—We described a new

approach to analyze the dynamics of periodically driven
spin systems with long-ranged interactions and applied it to
explain the recently observed surprising stability of DTC in
a dipolar spin system. The results of our analysis are in very

FIG. 3. Decay rate versus perturbation ε for various τ1’s obtained
numerically [23]. One sees a sharp rise of the decay rate as one
crosses the DTC phase boundary [determined as the ε for which
Γðε; τ1Þ ¼ 1=100], which is reminiscent of a phase transition.
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good agreement with experimental observations. They
demonstrate that these observations correspond to a novel,
critical regime of the DTC order.
Furthermore, our general approach can be applied to

analyze the interplay of long-range interactions, random-
ness, and periodic driving in a broad class of experimental
systems. The present analysis focused on the experimentally
relevant case of critical interactions, decaying as 1=rα,
where α coincides with the dimensionality of the system,
α ¼ d ¼ 3. This leads to direct relaxation processes of spin
pairs. It is interesting to extend the analysis to the case α > d
(e.g., α ¼ 3, d ¼ 2), where resonant spin-pair-flip processes
are rare and presumably do not provide the main relaxation
channel. Experimentally, such a situation can be realized by
reducing the dimensionality of the dipolar spin systems. In
the static case, relaxation is expected to occur via multispin
processes: In essence, a sparse resonant network may form,
which can act as a heat bath that mediates the relaxation of
other spins [16,18]. We expect that future experiments on
DTC in reduced dimensions will allow one to probe such a
delicate interplay of various relaxation mechanisms in
driven systems with long-range interactions. Our theoretical
approach is well suited for analyzing such systems. Finally,
apart from these specific realizations, our analysis demon-
strates that the DTC response to periodic perturbations can
be used as a sensitive probe of nonequilibrium quantum
states and phases of matter.
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