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We consider ground states of quantum spin chains with symmetry-protected topological (SPT) order as
resources for measurement-based quantum computation (MBQC). We show that, for a wide range of SPT
phases, the computational power of ground states is uniform throughout each phase. This computational
power, defined as the Lie group of executable gates in MBQC, is determined by the same algebraic
information that labels the SPT phase itself. We prove that these Lie groups always contain a full set of
single-qubit gates, thereby affirming the long-standing conjecture that general SPT phases can serve as
computationally useful phases of matter.
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Introduction.—In many-body physics, the essential prop-
erties of a quantum state are determined by the phase of
matter in which it resides. Recent years have witnessed
tremendous progress in the discovery and classification of
quantumphases [1–10], and it is thus pertinent to ask—what
can a phase of matter be used for? A traditional example is
the ubiquitous superconductor, while newly discovered
phases such as topological insulators [11] and quantum
spin liquids [12] have promising future applications.
Quantumphases are useful in quantum information process-
ing as well: certain topological phases allow for error-
resilient topological quantum computation via the braiding
and fusion of their anyonic excitations [13,14]. These
applications all operate due to properties of a phase rather
than a particular quantum state; hence, they enjoy passive
protection against certain sources of noise and error.
In this Letter, we establish a general connection between

the symmetry-protected topological (SPT) phases in one
dimension (1D) [3–5] and quantum computation. To do this
we use the framework of measurement-based quantum
computation (MBQC) [15,16], in which universal compu-
tation is possible using only single-body measurements on
an entangled many-body system. The computational power
of an MBQC scheme, defined by the set of logical gates
that can be performed using measurements, is related to the
entanglement structure of the many-body ground state.
Whether this computational power is particular to individ-
ual states, or a property of a phase as above, is a long-
standing open problem [17–29]. An important early result
showed that every ground state within certain SPT phases
has the ability to faithfully transport quantum information
along a 1D chain; however, “universal” single-qubit gates
appeared to be properties only of special points in the
phases [27]. Later, it was shown that, for one particular SPT
phase (namely, one that is protected by S4 symmetry),
universal single-qubit gates can be implemented through-
out the entire phase [23]. Yet, it remains unknown whether

a general SPT phase can serve as such a computational
phase of matter.
Here, we construct a general computational scheme that

harnesses the part of a ground state that is fully constrained
by symmetry. This part is uniform throughout the SPT
phase, and therefore the computational power in our
scheme is a property of SPT phases rather than individual
states. This power is determined by the same algebraic
structure that is used to classify the SPT phases, namely,
group cohomology. This establishes a firm connection
between SPT order and the computational power of
many-body ground states.
We can use this connection to prove that universal single-

qubit gates are a property of all phases considered by
Ref. [27], and many more. Going beyond this, we identify
classes of phases that also allow operations on qudits of
arbitrarily large dimension. Overall, our results highlight
how the algebraic classification of quantum phases can
contribute to the study of the structures responsible for
quantum computational power, as outlined in Fig. 1.
In the following, we begin by reviewing the virtual space

picture of MBQC [32], which aids our subsequent analysis.

FIG. 1. In the same way that the language of category theory
allows us to classify gates that can be executed by braiding the
anyonic excitations of topologically ordered systems in two
dimensions (2D) [14,30,31], group cohomology determines the
gates implementable in measurement-based quantum computa-
tion using 1D resource states with symmetry-protected topologi-
cal order.
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We then introduce the three key elements of our scheme, and
demonstrate their use through the example of the Affleck-
Kennedy-Lieb-Tasaki (AKLT) state and the Haldane phase
before generalizing to other SPT phases. We finish by using
the algebraic classification of SPT phases to determine their
computational power.
Computation in virtual space.—We consider MBQC in

the virtual space picture, where states are represented in the
matrix product state (MPS) form [33]. The wave function
jψi of a 1D systemofN interacting sites of local dimensiond
(i.e., a spin chain) can bewritten inMPS formby introducing
the square matrices Ai, i ¼ 0;…; d − 1, such that

jψi ¼
X

i1;…;iN

hRjAiNAiN−1…Ai1 jLiji1…iNi; ð1Þ

where jRi, jLi are states in the so-called “virtual space” that
encode the boundary conditions of the finite chain. TheMPS
formalism leads to a useful interpretation of MBQC that
occurs in virtual space [32]: measuring the leftmost spin in
the chain with outcome jsi reduces chain length by 1 and
evolves the virtual system as jLi → ðPihsjiiAiÞjLi. With a
proper choice of measurement basis, this can correspond to
unitary evolution and can simulate computation up to
outcome-dependent byproduct operators. Sincewe consider
only 1D resource states, we say a state is universal if
measurement can induce a full set of gates for a single qudit,
corresponding to operators in SUðDÞ on some D-level
subspace in virtual space.
A simple example is the spin-1 AKLT state, which is well

known to be a universal resource [34]. TheMPSmatrices are
the Pauli matrices, Ai ¼ σi, with respect to the wire basis
B¼fjxi;jyi;jzig where jii is the 0 eigenstate of the spin-1
operator Si. To achieve a rotation by θ about the z axis, we
measure in the basisBðz;θÞ¼fjθxi;jθyi;jzig≡fcosðθ=2Þjxi−
sinðθ=2Þjyi;sinðθ=2Þjxiþ cosðθ=2Þjyi;jzig and propagate
the byproducts σx, σy, and σz, respectively. We enact
byproduct propagation via symmetry transformations of
future measurement bases, as described in Ref. [22]. With
this, the first two outcomes give the desired rotation by θ
while the third does nothing, so the gate is probabilistic with
success probability 2

3
. Rotations about the x axis can be

achieved similarly, giving a full set of SUð2Þ operations.
To extend the universality of the AKLT state and others

like it to entire SPT phases, we introduce three

modifications to the usual MBQC procedure, as described
in Fig. 2. The purpose and justification of each are given in
the following section, using the AKLT state and Haldane
phase as examples.
Computation in the Haldane phase.—We begin this

section by introducing the “mixed state interpretation” of
MBQC that is used throughout this Letter. Here we argue its
validity, with a formal proof given in Supplemental Material
[35]. We define a computation by a sequence of n meas-
urement bases, which are fixed modulo byproduct propa-
gation. In general, an input state jψi is taken to a final
state jψ s⃗i that depends on the measurement outcomes
s⃗ ¼ ðs1;…; snÞ. Then we measure some observable O on
jψ s⃗i, whose eigenvalues oi appear with probability pðoijs⃗Þ.
To garner measurement statistics of O, we must repeat the
computation, whereupon the full statistics are given by
pðoiÞ ¼

P
s⃗pðoijs⃗Þps⃗ where ps⃗ is the probability of out-

comes s⃗. These statistics are encoded in the mixed state
σ̂ ¼ P

s⃗ps⃗jψ s⃗ihψ s⃗j; for instance, hOi ¼ P
s⃗ps⃗hψ s⃗jOjψ s⃗i≡

TrðOσ̂Þ. Hence in this probabilistic scenario the computa-
tional output must be interpreted to be σ̂.
To determine the mixed state σ̂, we simply sum over all

possible outcomes of each measurement. It is crucial that
this sum over outcomes is implemented after byproduct
propagation, making it very different from simply tracing
over each spin in the chain. The byproducts accumulated at
the end of the computation affect the basis of computational
readout, during which we do not sum over outcomes. By
analyzing the computation in this way, we can design a
sequence of measurement bases such that σ̂ approximates
the desired output. If the computation defined by this
sequence of measurements is repeated many times, it
deterministically produces the desired measurement sta-
tistics of any observable O, even though each run of the
algorithm may produce a different output state that is
meaningless on its own.
Let us return to the AKLT state as an example. By

measuring in the basis Bðz; θÞ and summing over meas-
urement outcomes, we find that an initial state jLihLj
becomes

σ̂ ¼ 2

3
e−iθσz=2jLihLjeiθσz=2 þ 1

3
jLihLj: ð2Þ

Since the original gate is probabilistic, this is a mixed state
and does not represent unitary evolution. However, for
small angles dθ, it is unitary up to first order,

σ̂ ¼ e−i
2
3
dθσz=2jLihLjei23dθσz=2 þOðdθ2Þ: ð3Þ

So for small rotation angles dθ, the mixed output state is
our initial state rotated by a reduced angle 2

3
dθ about the z

axis. Restriction to gates that are close to the identity is an
unavoidable consequence of the mixed state interpretation,
and finite rotations must be split into many infinitesimal
pieces [39]. The number of measurements needed to
execute a unitary gate with rotation angle θ and admissible

FIG. 2. Illustration of the measurements needed to execute a
rotation about the z axis in the Haldane phase example. Our
scheme consists of three modifications to the usual MBQC
procedure: (1) In analysis of the scheme, measurement outcomes
are summed over, such that the computational output is interpreted
as a mixed state, (2) finite rotations are split into smaller pieces dθ
that each differ only slightly from the identity, and (3) consecutive
gates are separated by many applications of the identity gate.
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error ϵ is Oðθ2=ϵÞ; details can be found in Supplemental
Material [35].
The AKLT state is in the Haldane phase, which we

define as the SPT phase protected by on-site Z2 × Z2

symmetry [40]. Every state in the Haldane phase can be
viewed as an AKLT state with some additional entangle-
ment that encodes the microscopic details of the state. This
is formally expressed in terms of the MPS matrices, which
factorize as Ai ¼ σi ⊗ Bi in the wire basis B [27]. The
Pauli part acts in the logical subspace into which informa-
tion is encoded and processed. The matrices Bi act in the
junk subspace and contain all of the microscopic details of
the state. Importantly, byproduct propagation via symmetry
transformations acts only within the logical subspace. This
is not a problem for measurements in the wire basis, which
evolve the two subsystems independently. But measure-
ments in other bases mix the junk and logical subspaces,
which hides the logical information and introduces an
unavoidable outcome dependence into the computation.
We now show how the mixed state interpretation allows us
to solve both of these problems in a relatively simple way.
Consider a measurement in the infinitesimally tilted

basis Bðz; dθÞ. Without loss of generality, we assume that
our initial state is factorized across the subspaces as
jϕihϕj ⊗ ρfix, for a particular fixed point state ρfix that is
defined later. If we get the outcome jθxi and propagate σx

on the logical subspace, our state becomes

jϕihϕj ⊗ ρfix → jϕihϕj ⊗ BxρfixBx†

þ i
dθ
2
ðjϕihϕjσz ⊗ BxρfixBy†

− σzjϕihϕj ⊗ ByρfixBx†Þ; ð4Þ
up to first order in dθ. We see that the two subsystems are
no longer factorized, and the logical state jϕihϕj is no
longer accessible.
To remedy this, we flow the junk subspace towards a

fixed point. This is accomplished by simply measuring a
large number of spins in the wire basis. In the mixed state
interpretation, a measurement in the wire basis followed
by logical byproduct propagation effects the operation
I⊗

P
iB

ið·ÞBi†≡I⊗ ~E. Since every state in the Haldane
phase is short-range correlated, the channel ~E has a unique
fixed point, which is ρfix, with all other eigenvalues of
modulus less than unity [22]. Hence measuring m con-
secutive spins in the wire basis results in the linear channel
I ⊗ ~Em and projects the junk subspace onto the fixed point
ρfix. The projection occurs exponentially fast over the
correlation length ξ of the state.
Applying this to Eq. (4), which must be summed with its

counterparts for the other measurement outcomes jθyi and
jzi, we find that for large enough m,

σ̂ ¼
�
νjϕihϕj þ i

dθ
2
ðνxy þ νyxÞ½jϕihϕj; σz�

�
⊗ ρfix; ð5Þ

where we have defined limm→∞
~EmðBiρfixBj†Þ ¼ νijρfix and

ν ¼ νxx þ νyy þ νzz. Up to first order in dθ, this corre-
sponds to a unitary rotation acting on the logical subspace,

T ðz; dθÞ ¼ exp

�
−idθ

�
νxy þ νyx

2ν

�
σz
�
: ð6Þ

Hence, making a measurement in the rotated basis
Bðz; dθÞ, followed by a series of measurements in the wire
basis, produces the desired rotation of the virtual state jϕi
up to a scaling factor νxy þ νyx=ν. As long as this factor is
nonzero, it can be measured on the chain prior to compu-
tation by attempting a finite rotation (split into small
pieces), and measuring the reduction in rotation angle
[41]. The parameters νij contain all relevant microscopic
details of our resource state jψi. Since they can be
measured during a calibration step, any state in the phase
can be used as a resource without prior knowledge of its
identity.
We can repeat the above procedure for rotations about

the x axis to generate all of SUð2Þ. Hence every state in the
Haldane phase, with the exception of a null subset in which
some of the constants νij are 0, has the same computational
power as the AKLT state (which satisfies νij ¼ 1

3
∀ i; j). To

complete the scheme, we require a method to read out and
initialize the virtual state that also works throughout the
phase. This can be done without the need of ancillary
systems on the boundaries [41].
Generalization to other phases.—Our scheme does not

depend on any properties that are particular to the Haldane
phase, so it can be generalized to a large class of other SPT
phases. A general 1D SPT phase without symmetry break-
ing is defined with respect to an on-site symmetry group G
such that uðgÞ⊗N jψi ¼ jψi for some unitary representation
u of G. The phase is then labeled by a cohomology class
½ω� ∈ H2½G;Uð1Þ� in the second cohomology group of G
that describes how this symmetry acts in the virtual
space [3].
The Haldane phase is an example of a maximally

noncommutative SPT phase, as defined in Ref. [27].
Such phases satisfy all conditions needed to apply our
methods, namely, the existence of a logical subspace and
the ability to propagate byproduct operators within it.
Indeed, suppose that G is finite Abelian and [ω] is
maximally noncommutative, meaning fg ∈ Gjωðg; g0Þ ¼
ωðg0; gÞ∀ g0 ∈ Gg ¼ feg. By diagonalizing the represen-
tation u, we obtain the wire basis B ¼ fj0i;…; jd − 1ig
such that uðgÞjii ¼ χiðgÞjii∀ g ∈ G where χiðgÞ are linear
characters of G. Maximal noncommutativity then implies
that the MPS tensor Ai can be written in the wire basis
as [27],

Ai ¼ Ci ⊗ Bi; ð7Þ
where Ci are D ×D unitary and trace-orthogonal matrices
and D ¼ ffiffiffiffiffiffiffijGjp

is the dimension of our logical subspace
[42]. Ci can be determined uniquely from G, [ω], and χi as
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described in Supplemental Material [35]. In general, if
some group G has a finite Abelian subgroup H such that
½ωjH� is maximally noncommutative, we can make the
exact same argument with H taking the place of G
everywhere. This means the following results also apply
to certain non-Abelian groups and Lie groups.
Now we follow the same steps used to perform

computation in the Haldane phase. Measurement in the
slightly tilted basis Bði; j; dθ;φÞ ¼ fj0i;…; jii þ dθeiφjji,
jji − dθe−iφjii;…; jd − 1ig, followed by measurements in
B to drive the junk subspace to a fixed-point state, induces
an infinitesimal rotation in the logical subspace,

T ði; j;dθ;φÞ ¼ exp

�
dθ

jνijj
ν

ðeiðφþδijÞCi†Cj

− e−iðφþδijÞCj†CiÞ
�
; ð8Þ

where νij ¼ jνijjeiδij is as defined earlier and ν ¼
P

d−1
i¼0 νii.

As before, the microscopic details of the state enter only as
these measurable constants. Computation can only proceed
if these constants are nonzero, which is satisfied for all but a
null set of states. With knowledge of these constants,
Bði; j; dθ;φÞ can be chosen such that the primitive gates
are generated by elements of the set of anti-Hermitian
operators,

O ¼ fαCi†Cj − α�Cj†Cig; ð9Þ
with i; j ¼ 0…d − 1, i ≠ j, jαj ≪ 1. Furthermore, we have
edθAedθBe−dθAe−dθB ≈ eðdθÞ2½A;B�, so that our infinitesimal
generators form a real Lie algebra that in turn generates a
Lie group L½O� of executable gates.
From the above, we can see the main strength of our

methods. Given only the algebraic quantities G, u, and [ω]
that describe the SPT phase of our resource state, we are
able to define a complete MBQC scheme, including the set
of gates and the measurements needed to execute them. The
computational power of each state in the phase is uniformly
defined as the Lie group L½O�, which is completely
determined by the same algebraic quantities. This signifies
the existence of a deep connection between SPT order and
MBQC via the language of group cohomology.
Determining computational power.—To determine the

computational power of a phase, we must identify the Lie
group L½O�. We do this by taking advantage of the
algebraic structure inherited from the SPT phase classi-
fication. Consider first the case where the representation
ujH contains all nontrivial characters of the subgroup H.
This means that O contains D2 − 1 trace-orthogonal, anti-
Hermitian operators, so L½O� ≅ SUðDÞ. If the Hilbert
space dimension of our physical sites is smaller than
D2 − 1, or certain characters χi do not appear in ujH,
L½O� may be some Lie subgroup of SUðDÞ. However, with
the condition of maximal noncommutativity, this subgroup
is always universal on a qudit system, as stated in the
following theorem.

Theorem 1. Consider an SPT phase defined by an on-
site symmetry groupG and cohomology class [ω]. Suppose
there exists a finite Abelian subgroup H ⊂ G such that
½ωjH� is maximally noncommutative, and let pn be a prime
power dividing

ffiffiffiffiffiffiffijHjp
. Then L½O� ⊃ SUðpnÞ.

This result, proven in Supplemental Material [35],
determines the minimal computational power of the phase,
which is independent of u and hence uniform amongst the
phase. This shows that 1D ground states with SPTorder are
generically useful as MBQC resources.
Beyond this minimal case, L½O� can often be expanded

to gain additional computational power. For example, when
H ¼ ðZ2Þ4, our theorem guarantees that SUð2Þ ⊂ L½O�,
but this can be expanded to either SUð4Þ or SUð2Þ × SUð2Þ
depending on the on-site symmetry representation u. So,
while changing u is generally considered to not change the
SPT phase of a system [4], it remains an important label for
total computational power in our scheme. If, however, we
allow ourselves to redefine the locality of measurements by
blocking neighboring sites, L½O� always equals SUðDÞ
after sufficient blocking.
Now we must ask the following: which symmetry groups

protect phases that satisfy our theorem? To answer this in
general is a difficult problem of group cohomology, but we
can identify some particularly relevant examples. When G
is a classical Lie group [except Spinð4nÞ], there is a sub-
group of the form ZN × ZN ⊂ G such that H2½G;Uð1Þ� ≅
H2½ZN × ZN;Uð1Þ� [44,45]. Since ZN × ZN protects a
maximally noncommutative phase [27,43], G must protect
a phase that satisfies our theorem. The same can be said for
any subgroup G0 such that ZN × ZN ⊂ G0 ⊂ G. This has
already been observed in Ref. [24] for the groups D4, A4,
S4 ⊂ SOð3Þ, which each contain Z2 × Z2. Another exam-
ple is the class of groups for which the subgroup H speci-
fied in theorem 1 appears as a (semi)direct factor, that is,
G ¼ H0⋊H for some subgroup H0 that could represent,
e.g., time reversal symmetry [46].
Conclusion.—By introducing three simple modifications

to the usual MBQC procedure, we showed that the MBQC
power of an SPT-ordered ground state of a spin chain is
determined solely by the cohomological information that
labels the corresponding SPT phase, and that this power is
always sufficient for universal computation on a single
qudit. Regarding the algebraic classification of phases of
matter and its role in quantum computation, our results
show that group cohomology links SPT order and MBQC
in 1D, in the same way that modular tensor categories link
topological order and topological quantum computation in
2D [14,30,31]. In each case, the algebraic framework
that classifies the phases of matter also classifies their
computational properties. Whether this extends to higher
dimensions and other types of quantum phases is an
intriguing question at the intersection of quantum informa-
tion and condensed matter physics. There is already
evidence that SPT order in higher dimensions can lead
to unique computational properties [21,26,29,47–50]. It
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would also be interesting to see whether the mathematical
frameworks that unify topological order and SPT order,
such as G-crossed braided tensor categories [6], could also
describe computation with systems that have both types
of order.
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