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Collective spins of large atomic samples trapped inside optical resonators can carry quantum information
that can be processed in a way similar to quantum computation with continuous variables. It is shown here
that by combining the resonators in multipath interferometers one can realize coupling between different
samples, and that polynomial Hamiltonians can be constructed by repeated spin rotations and twisting
induced by dispersive interaction of the atoms with light. Application can be expected in the efficient
simulation of quantum systems.
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Introduction.—Quantum computation with continuous
variables (CVs) is an alternative to the computation based
on qubits [1,2]. Efficient simulation of quantum processes
with dynamical CVs is one of the main motivations for this
approach [3–6]. A universal CV quantum computer would
need (i) a sufficiently large set of single CV modes each of
which can be initialized in a suitable quantum state, (ii) a
suitable set of single-mode Hamiltonians capable of being
combined into more complicated Hamiltonians realizing
arbitrary polynomials of theCV, and (iii) a suitable interaction
Hamiltonian of different CVs.As shown inRef. [1], having in
each mode k a conjugate pair of variables qk and pk
commuting as ½qk; pk� ¼ i, any polynomial Hamiltonian of
qk andpk can be constructed if a Hamiltonian of at least third
power of qk or pk is available, as well as some simpler
Hamiltonians realizing, e.g., displacements or rotations in the
phase space. Hamiltonians containing higher powers of q and
p are generated by cascaded application of commutators of
lower power Hamiltonians. As a possible model of a CV
quantum computer, one considers a set of optical modes
where Kerr interaction ∝ ðq2 þ p2Þ2 plays the role of the
higher order Hamiltonian, and beam splitters realize the
interaction between different modes. Since the Kerr inter-
action is typically too weak to be practical for quantum CV
operations, alternate schemes have been proposed. These
include quantum computing with CV clusters [7,8], or
measurement-based schemes for higher order Hamiltonians
such as ∝ q3 [9,10].
Here, a scheme of quasi-CV quantum computation based

on collective spins of large (N ≳ 103) atomic samples
interacting via optical fields in multipath interferometers
is proposed. Although spin is a discrete variable, for largeN
and nearly polarized atomic samples the spin components
perpendicular to the polarization direction have similar
properties as the CVs position Q and momentum P of a
harmonic oscillator. Visualizing collective spin states on a
Bloch sphere, the computationally relevant states are
localized in a confined area where the geometry is close

to that of a flat phase space. On the other hand, the curved
geometry brings a special advantage in that already quad-
ratic Hamiltonians typically used to generate spin squeezing
are sufficient to generate higher power Hamiltonians by
commutators. This is achieved by a sequence of rotations
(linear Hamiltonian) and squeezing operations (quadratic)
which can, in principle, realize Hamiltonians containing,
among others, arbitrary powers of the computational
variable. Moreover, if the atomic samples are placed in
optical resonators mutually coupled to form an interferom-
eter, the off-resonant atom-light interaction can mediate
quantum nondemolition (QND) interaction between vari-
ous samples. By changing resonator lengths and optical
phases between the resonators, one can select the modes to
interact. Thus, multimode polynomial Hamiltonians can be
realized. To realize quantum computation, the system is
initialized by squeezing the atomic spins in each resonator,
and at the end the results are read-off by measuring the
relevant spin components as in the cavity spin squeezing
experiments [11,12].
Atoms in a resonator.—Based on the idea of atomic spin

squeezing by cavity feedback [11,13], we first consider a
scheme in Fig. 1(a). An incoming laser beam of electric
intensity Ein is partially reflected from the left cavity mirror
and partially enters the cavity. The laser is tuned close to the
cavity resonance where the field intensity inside the cavity
strongly depends on the optical phase. A large collection
of nearly resonant atoms is optically trapped inside the
cavity by an additional field at antinodes of the standing
wave Ecav. The relevant atomic states are the hyperfine-split
states g1 and g2 of the electronic ground state and an
electronically excited state e. The laser frequency is tuned
halfway between the transitions g1e and g2e such that the
field is detuned byΔ from each of them. The presence of an
atom in state g1 (g2) changes the optical phase by �δφ,
respectively, where δφ ¼ ð6=π2Þðλ=wÞ2ðΓ=ΔÞ [14]. Here λ
is the wavelength, w is the beam waist, and Γ is the optical
decay rate from state e.
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A collective spin state of the atoms can be expressed
in terms of operators â1;2 and their Hermitian conjugates,
where â†j (âj) creates (annihilates) an atom in state gj,

respectively. The total number of atoms isN ¼ â†1â1 þ â†2â2,
and the commutation rules are ½âj; â†k� ¼ δjk. We construct
angular momentumlike operators X, Y, and Z as X ¼
1
2
ðâ†1â2 þ â1â

†
2Þ, Y ¼ ð1=2iÞðâ†1â2 − â1â

†
2Þ, and Z¼

1
2
ðâ†1â1−â†2â2Þ satisfying the commutation relations ½X; Y� ¼
iZ, ½Y; Z� ¼ iX, and ½Z; X� ¼ iY. Note that for simplicity we
useX, Y, Z rather than the more common notation Jx;y;z. For
states with jXj, jZj ≪ N andY ≈ N=2 [near the equator, as in
Fig. 1(b)], the operators ~q≡ ffiffiffiffiffiffiffiffiffi

2=N
p

Z and ~p≡ ffiffiffiffiffiffiffiffiffi

2=N
p

X
commute as ½ ~q; ~p� ≈ i and can be used to simulate the
CVs q and p.
The optical phase shift in the cavity due to the collective

atomic state can be expressed as Δφ ¼ 2δφZ. The cavity

phase shift influences the inside field intensity as follows.
Assume the left mirror of the cavity has transmissivity
T ≪ 1, whereas the right mirror is perfectly reflecting.
Assume the loss per one round trip in the cavity is ϵ ≪ T.
If α describes the optical phase deviation from the center of
the resonance line, the field intensity at the antinodes in the
cavity can be expressed as E2

cav¼E2
inð4=TÞ½1þð2α=TÞ2�−1

(see [14] for the derivation). Expressing the wave number
k ¼ 2π=λ as k ¼ k0 þ Δk where k0L ¼ nπ with L being
the cavity length and n integer, the phase deviation is
α ¼ 2ðLΔkþ δφZÞ.
The cavity field induces an ac Stark shift of the atomic

states so that the levels g1;2 move apart byωac ¼ 2Ω2=Δwith
the Rabi frequency being Ω ¼ jEcavj℘=ℏ, where ℘ is the
electric dipole moment of the optical transition. The dipole
moment is related to the spontaneous decay rate by Γ ¼
ð1=4πϵ0Þð4ω3

0℘
2=3ℏc3Þ [15], where ϵ0 is the vacuum

permittivity and ω0 ¼ k0c. The energy of the whole atomic
sample is thus changed by H ¼ 2ℏωacZ. Expressing the
intensity of the incoming field in terms of the incoming
power P0 ¼ ðπ=2Þϵ0cw2E2

in which can be expressed by
means of the rate R of incoming photons P0 ¼ Rℏω0,
we can write

H ¼ ℏ
24

π2T
1

1þ ð2αT Þ2
�

λ

w

�

2 Γ
Δ
ZR: ð1Þ

Linearizing the dependence of ½1þ ð2α=TÞ2�−1 on Z for
sufficiently large detuning jΔkj ≫ δφjZj=L one finds

H ¼ ℏðωZ þ χZ2Þ; ð2Þ

where

ω ¼ 24

π2T
1

1þ ð4LΔkT Þ2
�

λ

w

�

2 Γ
Δ
R; ð3Þ

χ ¼ −
27 × 32

π4
1

T2

4LΔk
T

½1þ ð4LΔkT Þ2�2
�

λ

w

�

4
�

Γ
Δ

�

2

R: ð4Þ

Note that a suitable choice of parameters T, L, and Δk is
needed so as to ensure both that the interaction is strong
enough and that χ is independent of Z with a reasonable
precision. Hamiltonian Eq. (2) realizes the one-axis twisting
(OAT) scenario of spin squeezing [16]. The sign of the
quadratic term χZ2 can be switched by switching the sign
of detuning Δk. Recently, application of this twist-untwist
feature for quantummetrological purposeswas proposed [17].
Apart from a quadratic Hamiltonian, one needs also a

suitable set of operators linear in the variables X, Y, Z. A
microwave field off-resonantly coupling states g1;2 realizes
Hamiltonians proportional to Z. A resonant microwave
field can realize Hamiltonians proportional to X cos γ þ
Y sin γ where γ is the mutual phase between the microwave
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FIG. 1. (a) Scheme of the resonator with trapped atoms. Red-
detuned standing wave holds the atoms trapped at locations
coinciding with the antinodes of the field Ecav interacting with the
atoms with Rabi frequency Ω. The cavity field frequency is tuned
halfway between the transitions eg1 and eg2 such that the phase
shift in the cavity is proportional to the difference of atomic
numbers in states g1 and g2. The phase in the resonator influences
the field intensity inside. (b) Michelson-like interferometer with
two resonators. Difference of atomic numbers in states g1 and g2
corresponds to the spin coordinate Z. Phase of each resonator
influences the intensity in both of them. The QND interaction
rotates sphere 1 around the Z1 axis in dependence on the value of
Z2 and vice versa.
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and the atomic sample [11,18]. Alternately, one can also
use optical Raman transitions between the spin states.
Coupling between different atomic samples.—First con-

sider a scheme with two cavities in a Michelson-like setup
as in Fig. 1(b). Various modifications are possible, but for
concreteness, let us assume cavities in branches a and c
with resonant path lengths 2Lak0 ¼ 2Lck0 ¼ 2πn and a
mirror in path b with 2Lbk0 ¼ ð2nþ 1Þπ. In this case a
phase shift in one cavity strongly influences the intensity in
both cavities. Assuming a sufficiently large detuning
jΔkj ≫ ϵ=ð2LÞ, linearization of the phase dependence
leads to the Hamiltonian of the form

H ¼ ℏ½ωðZ1 þ TBZ2Þ þ χðZ1 − Z2Þ2�; ð5Þ
where

ω ¼ 26 × 3

π2
RB

ð1þ TBÞ2
1

T

�

λ

w

�

2 Γ
Δ
R; ð6Þ

χ ¼ −
28 × 32

π4
RBTB

ð1þ TBÞ3
1

TLΔk

�

λ

w

�

4
�

Γ
Δ

�

2

R; ð7Þ

with TB ¼ 1 − RB being the transmissivity of the interfer-
ometer beam splitter (see Ref. [14] for the detailed
derivation). Hamiltonian Eq. (5) can be straightforwardly
used to generate evolution corresponding to the QND
Hamiltonian

HQND ¼ −ℏ2χZ1Z2: ð8Þ
This is achieved by a four-step sequence in which rotations
of the Bloch spheres change Zj → −Zj and the sign of χ is
changed to the opposite value in the two steps when exactly
one of the coordinates Zj is changed. This sequence
eliminates the linear terms ∝ Zj as well as the quadratic
terms ∝ Z2

j of (5).
The strength of the interaction χ can be increased by

decreasing the detuning Δk. This is illustrated in Fig. 2
where the power inside one of the cavities as well as the
resulting interaction Hamiltonian are shown for two differ-
ent values of Δk. For small Δk [Fig. 2(a)] the atoms may
tune the system close to resonance where the power
increases dramatically. This leads to strong interaction,
but also to the deformation of the dependence of H on Z1;2

beyond the approximation of Eqs. (5) and (8). For largerΔk
[Fig. 2(b)] the Hamiltonian is closer to the bilinear form,
Eq. (8), but the interaction is weaker. The optimal choice of
Δk will depend on the particular task to be achieved with
the interacting atoms.
The scheme can be scaled up to contain more cavities.

The simplest generalization is a three-cavity scheme where
a cavity is placed in each of the a, b, c branches of the
interferometer in Fig. 1(b). By shifting the cavity mirrors,
some cavities can be brought sufficiently near to resonance
whereas others will be far off-resonant. In the resulting

Hamiltonian, only the atomic samples of the nearly
resonant cavities will interact. A five-cavity scheme is
illustrated in Fig. 3. As checked by numerical simulation of
the interferometer, two arbitrary cavities can be brought to
interaction whereas the rest of them are switched off.
Construction of higher power Hamiltonians and

functions of the CVs.—Having the Hamiltonian ∝ Z2 with
both signs, as well as rotations of the Bloch sphere by
linear Hamiltonians, one can construct any quadratic
Hamiltonian of X, Y, Z. In particular, the two-axis counter-
twisting (TACT) [16] Hamiltonians X2−Y2 or XY þ YX ¼
1
2
½ðX þ YÞ2 − ðX − YÞ2� are built by rotating the Bloch

sphere by �π=2 or �π=4 and applying �Z2 (for a general
treatment of spin squeezing by quadratic Hamiltonians,
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FIG. 2. Dependence of power P1 in cavity 1 on the atomic spins
Z1;2. The lines at the bottom are contours of equal power, the
shaded rectangular area of −3 × 103 ≤ Z1;2 ≤ 3 × 103 shows the
accessible values with N ¼ 6 × 103 atoms. Insets: Resulting
interaction Hamiltonian after the four-step sequence described
in the text. The lines show dependence of the Hamiltonian on
Z1 for 9 equidistant values of Z2 between �3 × 103. The
setup corresponds to that in Fig. 1(b) with w=λ ¼ 100, cavity
mirror transmissivity T ¼ 5 × 10−3, absorption ϵ ¼ 1.2 × 10−6,
cavity length L ¼ 26 mm, and input power P0 ¼ 12 nW.
(a) LΔk ¼ 0.08T, (b) LΔk ¼ 0.5T.
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see Ref. [19]). Other Hamiltonians can be constructed as
commutators of the available operators by the sequence
e−iAΔte−iBΔteiAΔteiBΔt ¼ e½A;B�Δt2 þOðΔt3Þ and by the
Suzuki-Trotter expansion [20–22]. Using the commutation
relations of X, Y, Z, one finds, e.g.,

X3 ¼ i
4
½ðZ2 − Y2Þ; ðYZ þ ZYÞ�

þ i
4
½ðXZ þ ZXÞ; ðXY þ YXÞ� þ 1

4
X; ð9Þ

or a two-mode Hamiltonian

X3
1Z2 ¼

1

4
X1Z2 þ

1

4
½ðZ2

1 − Y2
1Þ; ½Z2

1; X1Z2��

−
1

4
½X1Z1 þ Z1X1; ½X2

1; Z1Z2��; ð10Þ

that can be useful to construct functions mapping the
variables as ðX1; X2Þ → ðX1; fðX1Þ þ X2Þ. By cascading
the commutators one can construct Hamiltonians of arbi-
trary power. More efficient ways of producing various
Hamiltonians by using the fact that limited area of the
Bloch sphere is used can be found; optimization of the
process is in focus of further research.
Decoherence and losses.—Several challenges have to be

addressed to fully utilize the scheme. Losses are inherently
connected with the dispersive interaction as ϵ ∼
Nðλ=wÞ2ðΓ=ΔÞ2 [14]. Decreasing losses thus means also
decreasing the strength of the Hamiltonians and thus
making the process longer. Therefore, optimization of
the interaction strength should be applied to make the
process useful. Also, the optical field becomes entangled
with the atomic system leading to decoherence: the phase
of the outgoing light is influenced by the atomic number
inside, and phase of the atomic spins is influenced by the

fluctuating light intensity. This problem was studied in
detail in Ref. [23] and one can anticipate various scenarios
to solve it: recycling the light pulses to disentangle them
from the atoms, using sub-shot-noise squeezed pulses, or
detecting the energy of the outgoing light and considering
the atomic state conditioned on the result.
Discussion and conclusion.—The essential features of

the proposed scheme are the possibility to vary the sign of
the nonlinearity, to build Hamiltonians of higher powers of
the computational CVs out of the quadratic Hamiltonian,
and the possibility to couple multiple resonators in inter-
ferometric schemes. The seeming contradiction between
the possibility to generate higher power Hamiltonians out
of quadratic ones and the fact that at least cubic nonlinearity
is required in schemes as in Ref. [1] is resolved by
considering that the spin operators X, Y, Z themselves
are quadratic in the creation and annihilation operators.
Thus, the Hamiltonian Z2 contains terms like â†1â1â

†
2â2,

i.e., of the cross-Kerr type.
The approach is fully compatible with the scheme of

quantum computing with CV clusters [7,8] as all its
ingredients are present here: multimode squeezed states
can be initially prepared by the QND Hamiltonians, and
non-Gaussian operations are generated either by X3 and
higher order Hamiltonians, or by projective measurements
of a suitable non-Gaussian variable. Here, such a meas-
urement can be done by rotating the states close to the pole
of the Bloch sphere and then measuring Z which would be
analogous to photon counting in optical CV schemes. Note
that non-Gaussian features of the detected statistics in
atomic spin systems have been used recently for metrology
improvement [24].
The potential of collective spins of atoms in optical

resonators for CV quantum computation seems promising
taking into account the huge squeezing recently achieved
[12]. The scheme is expected to be useful especially for the
simulation of quantum systems [3–6].
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