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Directly in the thermodynamic limit, we show how to combine local imaginary and real-time evolution
of tensor networks to efficiently and accurately find the nonequilibrium steady states (NESSs) of one-
dimensional dissipative quantum lattices governed by a local Lindblad master equation. The imaginary
time evolution first bypasses any highly correlated portions of the real-time evolution trajectory by directly
converging to the weakly correlated subspace of the NESS, after which, real-time evolution completes the
convergence to the NESS with high accuracy. We demonstrate the power of the method with the dissipative
transverse field quantum Ising chain. We show that a crossover of an order parameter shown to be smooth
in previous finite-size studies remains smooth in the thermodynamic limit.

DOI: 10.1103/PhysRevLett.119.010501

Introduction.—The out-of-equilibrium behavior of dissi-
pative many-body systems is of relevance to experimental
platforms such as trapped ions [1], cold atoms [2], super-
conducting circuits [3–5], and nanoelectromechanical sys-
tems [6]. Theoretical activity has recently increased around
developing numerical methods for determining the non-
equilibrium steady states (NESSs) of such dissipative lattices
[7–15]. This includes tensor networkmethods [16–19],which
serve as an efficient numerical ansatz for states that obey an
area law [20] (i.e., have small correlations between their
bipartitions). It is proved that the mutual information of the
NESS of a local dissipative quantum system satisfies an area
law [21,22], assuring that their tensor network representation,
if found, will be computationally efficient. Also, a proof for
the stability [23] of NESSs against local system perturbations
assures that theoretically determinedNESSsof translationally
invariant systems are of relevance to experiments, where
translational invariance can only be approximate.
The focus of the present work is on the problem of

numerically finding the tensor network representation of the
NESSs of translationally invariant one-dimensional systems in
the thermodynamic limit. The infinite-size version of the time-
evolving block decimation (iTEBD) algorithm [24] enables a
(local) time evolution directly in the thermodynamic limit
using a matrix product state (MPS) that spans only a single
unit cell of the target state. Also, the iTEBD algorithm can
efficiently be used for both imaginary and real-time evolution
with local operators and is technically simple to implement.
When imaginary time evolution is performed with a

Hamiltonian, the fixed point lies in the ground state manifold
of the given Hamiltonian. An efficient tensor network can
accommodate the entire imaginary time evolution trajectory if
the fixed point obeys an area law. Furthermore, the convergence
toward the fixed point is exponentially fast with a rate propor-
tional to the energy gap of the Hamiltonian. Therefore, imagi-
nary time evolutionwith iTEBD is avery efficientway to obtain
ground states of localHamiltonians in the thermodynamic limit.

For real-time evolution of dissipative systems, the fixed
point lies in the NESS manifold. However, real-time evolu-
tion with iTEBD [25] is not always an efficient way to obtain
the NESS, since portions of the real-time evolution trajectory
from the initial state to the NESS may not obey an area law
even when the NESS does so itself [9]. Further, the rate of
convergence to the NESSs may be very slow [11,26]. For
finite-size chains, recent works [9,11] tackle these problems
using variational methods. These approaches, though accu-
rate, cannot be easily generalized to infinite-size systems and
are not technically so simple to implement. A method that
instead uses local imaginary time evolution with iTEBD
would overcome the shortcomings of these real-time evolu-
tion and variational search methods.
Prior approaches to finding one-dimensional NESSs

with tensor networks have exploited the area law property
of the target state to achieve efficiency. By additionally
exploiting a closely related but distinct physical property,
exponential decay of two-point correlators, we here show
how to overcome the limitations of real-time evolution
and variational searches for the NESS: we construct an
auxiliary local Hamiltonian such that its ground state
approximates the NESS and perform iTEBD imaginary
time evolution with the auxiliary Hamiltonian. In this way,
we are able to bypass any highly correlated portions of
the real-time evolution trajectory and arrive in the area-law-
obeying neighborhood of the NESS exponentially quickly.
We then further improve the convergence to the NESS
using a real-time evolution with the Lindbladian.
The auxiliary Hamiltonian approach that we present

holds potential for the thermodynamic limit of higher-
dimensional dissipative systems as well, since both imagi-
nary time evolution and variational optimization [27]
have been demonstrated to obtain ground states with the
higher-dimensional tensor network ansatz of infinite-size
projected entangled pair states (iPEPS) [28].
As a demonstration of our method, we use it to probe the

thermodynamic limit of a crossover in an order parameter
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of the one-dimensional dissipative transverse field Ising
model. To our knowledge, non-mean-field studies of this
crossover have only previously been performed in the
finite-size limit. Our result shows that this crossover
remains smooth in the thermodynamic limit.
Method.—The equation of motion for a (discrete)

quantum system coupled to a Markovian environment
is given by the Lindblad master equation (LME) [29].
Under the Choi isomorphism (ρ̂ ¼ P

jpjjΨjihΨjj → jρi ¼P
jpjjΨji ⊗ jΨji), the LME is

d
dt

jρi ¼ L̂jρi; ð1Þ

with

L̂ ¼ −
i
ℏ
ðH ⊗ 1 − 1 ⊗ HTÞ

þ
X

α

1

2
ð2Lα ⊗ L̄α − L†

αLα ⊗ 1 − 1 ⊗ LT
α L̄αÞ; ð2Þ

where H is the system Hamiltonian and Lα are dissipative
operators.
A matrix product density operator (MPDO) [30] is a

tensor network that serves as an efficient ansatz for a
mixed state density matrix of a one-dimensional lattice
when the correlations between real space bipartitions of
the state are small [30,31]. Under the Choi isomorphism,
the MPDO [30] can be written as a MPS [32]: jρi ¼P

d
s1;…;sN¼1 TrðAs1

1 :::A
sN
N Þjs1:::sNi, where the Aj are tensors

of dimension d ×D ×D, and D is referred to as the “bond
dimension.” The chief advantage of such an ansatz is that
while D needs to be exponentially large in the system
size for the MPS to be exact, a much smaller (i.e.,
computationally tractable) value of D yields extremely
high accuracy for states that obey an area law [20]. Another
advantage of this ansatz is that the entanglement spectrum
(denoted λ2i below) between sub-blocks of any bipartition
of the lattice is readily calculated [33]. In the case of
infinite-size systems with translational invariance, the
MPDO is referred to as an “iMPDO,” and it can span a
Hilbert space as small as a single unit cell of the target
physical state [24].
The NESSs (denoted jρ∞i) of dissipative systems

described by the LME are defined by L̂jρ∞i ¼ 0, with
the constraint that the jρ∞i are vectorized forms of positive
operators with unit trace (i.e., physically valid density
matrices; see below for further discussion). The authors
of Ref. [9] observe that jρ∞i will also be the ground state of
the nonlocal Hamiltonian L̂†L̂. For finite-size chains, they
present a variational method for finding the (nondegenerate)
ground state of L̂†L̂ as away of determining jρ∞i. However,
their method does not apply directly (i.e., without costly
extrapolation from finite-size scaling) in the thermodynamic
limit. Since L̂†L̂ is nonlocal, imaginary time evolution with
iTEBD also cannot be used to find its ground state. Here we

show that it is possible to construct a local auxiliary
Hamiltonian H such that the iTEBD algorithm may be
used to approach the infinite-size NESSs via imaginary time
evolution:

jρ∞i ≈ lim
τ→∞

expð−HτÞjρ0i
∥ expð−HτÞjρ0i∥

; ð3Þ

where jρ0i is any vectorized density matrix such that
hρ∞jρ0i ≠ 0.
As an initial motivation, we observe that if F is a local

Hamiltonian with positive eigenvalues, F2 will be a non-
local Hamiltonian with the same ground and excited states
as the local F. This suggests the possibility of finding a
local Hamiltonian H whose ground state is at least a good
approximation to the ground state of the nonlocal L̂†L̂.
We assume that L̂ is a translationally invariant local

operator; this corresponds to the case of a translationally
invariant local system Hamiltonian H and translationally
invariant local dissipation operators Lα. L̂ can, therefore, be
expressed as a sum of translationally invariant local terms
(L̂ ¼ P

rϵZL̂r), and we may write

L̂†L̂ ¼
X

r;sϵZ

L̂†
rL̂s: ð4Þ

Wemay use hL̂ri ¼ 0 as a benchmark and jhL̂rij as a figure
of merit. It was analytically proven in Ref. [21] that the
two-point correlator shows an exponential decay in a
NESS. Also, jρ∞i is determined completely by L̂, which
is local. Therefore, the long-range couplings in L̂†L̂ do not
play a significant role in determining its ground state jρ∞i,
and we may truncate the second sum in Eq. (4) by setting
s ¼ r. This truncation preserves both Hermiticity and
positivity. Further, taking the kth root of each remaining
term, we arrive at the proposed local auxiliary Hamiltonian
for imaginary time evolution to the NESS:

H ¼
X

rϵZ

ðL̂†
rL̂rÞ1=k: ð5Þ

If the (numerical) gap between the lowest two eigenvalues
of L̂†

rL̂r is less than 1, k > 1 will increase the gap since
L̂†
rL̂r is positive semidefinite. This will yield faster con-

vergence toward the ground state of H (for imaginary time
evolution, the rate of convergence is proportional to the
gap). While H for k > 1 will not generally commute with
H for k ¼ 1, we find that the advantage gained (see next
section) outweighs this drawback.
The form of L̂r can change as long as L̂ ¼ P

rϵZL̂r. L̂r
with larger support leads to longer-range couplings in H;
for L̂r of infinite support, H becomes equal to L̂†L̂ (when
k ¼ 1). We may, therefore, decrease the distance between
jρ∞i and the ground state ofH by increasing the support of
L̂r, albeit with an increased computational cost.
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Rather than relying on imaginary time evolution alone,
the following hybrid method can be more efficient: with
smallD, relatively large time step, and L̂r of small support,
imaginary time evolution can be used to rapidly converge
to the area-law-obeying neighborhood of the NESS, after
which real-time evolution with iTEBD can minimize jhL̂rij
with successively smaller time steps and successively larger
D. The Trotter error of iTEBD vanishes polynomially in
the time step size, and the spectrum (λ2i ) decays roughly
exponentially when there is an area law.
Asmentioned, for the converged solution to be physically

valid, it must correspond to a positive operator. If the NESS
is unique, it is discussed in Ref. [9] that this requirement
is automatically satisfied when L̂jρi ¼ 0 because L̂ is a
completely positive map. We may, therefore, assume a
unique NESS and assure (near) positivity by attaining very
small jhL̂rij and converging the spectrum. This is similar to
what is done in Ref. [9], which assures (near) positivity by
variationally reducing hL̂†L̂i to below a chosen threshold
and converging various observables, and Ref. [11], which
assures (near) positivity by variationallyminimizing ∥L̂jρi∥.
Numerical results.—There have been various numerical

investigations of the 1D quantum Ising model with nearest-
neighbor coupling, uniform transversemagnetic field, and on-
site dissipation [2,9,26,34–44]. Herewe look at the following
incarnation: the system is governed by Eqs. (1) and (2) with
the Hamiltonian given by H ¼ P

jϵZHj, where (ℏ ¼ 1),

Hj ¼ σ½j�z σ½jþ1�
z þ hxσ

½j�
x ; ð6Þ

j is the lattice site index, andhx is the transverse field strength;
the local dissipation terms are given byLj ¼ ffiffiffi

γ
p

σ½j�− , where γ
is a decay rate from spin-up to spin-down.
We choose a tensor network that is structured such that

two physical sites are associated to each of the numerical
sites of a two-site iMPDO. For both imaginary and real-time
evolution, a fourth order Suzuki-Trotter expansion of the
evolution operators is used. For the imaginary time evolu-
tion, we choose the following 4-local form (ℏ ¼ 1) for L̂r:

L̂r ¼ −iðHr ⊗ 1 − 1 ⊗ HT
r Þ þ

1

2
diss½2r� þ 1

2
diss½2rþ 1�

þ 1

2
diss½2rþ 2� þ 1

2
diss½2rþ 3�;

Hr ¼
1

2
σ½2r�z σ½2rþ1�

z þ σ½2rþ1�
z σ½2rþ2�

z þ 1

2
σ½2rþ2�
z σ½2rþ3�

z

þ 1

2
hxðσ½2r�x þ σ½2rþ1�

x þ σ½2rþ2�
x þ σ½2rþ3�

x Þ; ð7Þ

where the local dissipation term is given as diss½r�¼
ðγ=2Þð2σ½r�− ⊗σ½r�− −σ½r�þ σ½r�− ⊗1½r�−1½r�⊗σ½r�þ σ½r�− Þ. The overlap
between L̂r and L̂rþ1 in this form is two sites; forms
resulting in three site overlap would yield more intersite

couplings in H and, therefore, a better match between the
ground state of H and jρ∞i, but the above form is numeri-
callymore efficient and sufficient for our demonstration. It is
straightforward to verify that this form satisfies L̂¼P

rϵZL̂r.
For the finite-size version of this model, a previous

numerical study [38] shows that a smooth crossover occurs
in the value of the up-spin density n↑ ¼ P

rhn̂½r�↑ i=N as hx=γ
is increased from small to large values. To demonstrate the
theoretical validity of the imaginary time method put forth
in the previous section, we probe this crossover (for
γ ¼ 0.5) in the thermodynamic limit with imaginary time
evolution and real-time evolution independently. The pur-
pose here is to demonstrate that the imaginary time method
can come close to the NESS very efficiently and robustly
(i.e., with very crude parameters and convergence). In the
Supplemental Material [45], we check the convergence of
the imaginary time evolution vs both D and imaginary time
step size at the middle of the crossover. From there, we
determine that fixing D ¼ 15, and the imaginary time step
size at dτ ¼ 10−2 (in units of the inverse Ising interaction
strength squared) is sufficient for this purpose. For real-time
evolution, we also use a time step size of dt ¼ 10−2 (in units
of inverse Ising interaction strength). The simulations are
run until the spectrum is converged according to the
following criterion: jλ1ðtþΔtÞ−λ1ðtÞj=λ1ðtþΔtÞ<10−7,
where λ1 is the largest singular value in the iMPDO. At
each value of hx, the same initial state is used for both
imaginary time and real-time evolution. The results are
illustrated in Fig. 1. The spectra in the middle panel show
that the imaginary time evolution (k ¼ 4) and the real-time
evolution have converged to a weakly correlated subspace.
The bottom panel shows that jhL̂rij is much smaller than
the smallest energy scale in L̂r for real-time evolution and
imaginary time evolution (when k ¼ 4). The results in these
two panels indicate proximity to the NESS. Because jhL̂rij
is smallest for real-time evolution, the data in the top panel
for the real-time evolution can be considered the most
accurate, and the increasing overall match between the
imaginary time data and real-time data for n↑ with higher k
shows that the accuracy of the imaginary time evolution
improves with larger k. Though we do not investigate it
here, it is possible that the significant enhancement in
accuracy with larger k is due to the removal of metasta-
bility [46,47]. Taken together, these results demonstrate
the conceptual validity of the imaginary time evolution
method as an alternative to real-time evolution for
approaching the state space neighborhood of the NESS.
The level of accuracy achieved with the imaginary time
method is remarkable given the crude convergence scheme
and enormous truncation of L̂†L̂ in forming H. The
physical explanation for the success of the truncation of
L̂†L̂ is the exponential decay of the two-point correlators
in the NESS. For comparison, we show simulation results
for a 2-local form of L̂r in the Supplemental Material [45].
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The 2-local form also permits successful imaginary time
evolution toward the NESS but with poorer accuracy.
We note that our results indicate that in this one-

dimensional case, the crossover in n↑ remains smooth in
the thermodynamic limit; this is in contrast to the sharp
transition predicted for the two-dimensional version of the
model [8,43]. This is the first study of this crossover in the
thermodynamic limit beyond the mean-field theory.
We also demonstrate the functionality of the full hybrid

method (imaginary time evolution followed by real-time
evolution). For the same system parameters as the other data,
the top panel of Fig. 1 shows the converged data from the

hybrid method when the state at the end of the imaginary
time evolution for k ¼ 4 is converged to jhL̂rij < 10−3 with
real-time evolution. The entanglement spectra of the hybrid
method also converge to those of real-time evolution,
indicating both methods reach the same NESS.
To demonstrate that the hybrid method remains efficient

where real-timeevolution becomes inefficient,with γ ¼ 0.01
and hx ¼ 1, we evolve a highly correlated initial state with
the two methods separately and find that the hybrid method
converges rapidly in several minutes of computation time
withD ¼ 6, while real-time evolution over the same number
of time steps becomes trapped in an area-law-violating sector
of the Hilbert space even with D as high as 25. The time
evolution of jhL̂rij is shown in Fig. 2, while the evolution of
the spectra and further details are given in the Supplemental
Material [45]. It is clear that the initial imaginary time
evolution bypasses the highly correlated region of the real-
time trajectory and brings the iMPDO close to the neighbor-
hood of the NESS; thus, an efficient real-time evolution
becomes possible, and very high accuracy can be achieved.
Discussion.—Imaginary time evolution of tensor net-

works with iTEBD is an efficient way of approximating
the ground states of many-body quantum systems in the
thermodynamic limit when an area law holds for the ground
state; the area law permits high accuracy with a computa-
tionally tractable bond dimension. Here we have shown that
imaginary time evolution of an iMPDO with iTEBD is an
efficient way of approximating the NESS of dissipative
quantum chains when the NESS has both an area law and
exponential decay of two-point correlators; the area law
permits the iMPDO to approximate the NESS with high
accuracy with a computationally tractable bond dimension,
and the exponential decay of two-point correlators permits
the construction of a local auxiliary Hamiltonian with
which to perform imaginary time evolution with iTEBD.
Real-time evolution can be employed after the imaginary
time evolution to efficiently obtain the NESS with very
high accuracy. Alternatively, but perhaps less efficiently,
imaginary time evolution may be used alone to reach the
NESS by converging not only in the time step size and bond
dimension but also the support size of the local terms in the
auxiliary Hamiltonian.

FIG. 1. A comparison of iTEBD imaginary time and iTEBD
real-time evolution, and a demonstration of the hybrid method, for
an infinite-size Ising chain with Hamiltonian of the form in Eq. (6)
and dissipation rate γ ¼ 0.5 when the spectrum is converged as
described in the main text. The results show that imaginary time
evolution can serve as an alternative to real-time evolution for
approaching the NESS. The imaginary time evolution results are
for the 4-local form of L̂r given in Eq. (7). (Top) Converged up-
spin density n↑ vs transverse magnetic field strength hx for real-
time evolution and different values of k for the imaginary time
evolution. The overall accuracy of the imaginary time evolution
improves with larger k. (Middle) Entanglement spectra after
convergence for three different values of hx, with imaginary time
evolution results shown for k ¼ 4. The rapid decay of the spectra
shows that both evolutions converge to a weakly correlated
subspace, suggesting proximity to the NESS. The spectra of the
hybrid method converge to those of real-time evolution, indicating
the hybrid method also arrives at the same NESS. (Bottom) For
real time and imaginary time with k ¼ 4, jhL̂rij converges to
values much less than the smallest energy scale in the system, also
suggesting proximity to the NESS. The data for the hybrid method
indicate that performing real-time evolution after the imaginary
time evolution enhances the accuracy as expected.

FIG. 2. System parameters: γ ¼ 0.01, hx ¼ 1. Real-time evo-
lution (upper solid line, blue) with D ¼ 25 from the initial state
fails to converge to the NESS over a time scale equal to the largest
intrinsic time scale of the system. With the hybrid method
(D ¼ 6), imaginary time evolution (dotted line) rapidly achieves
proximity to the NESS, after which, real-time evolution (lower
solid line, green) efficiently attains jhL̂rij < 10−6.

PRL 119, 010501 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
7 JULY 2017

010501-4



In the course of demonstrating our method with the
dissipative transverse field quantum Ising chain, we have
shown that a crossover of an order parameter that is smooth
in the finite-size limit remains smooth in the thermody-
namic limit, in contrast to the two-dimensional case.
With the higher-dimensional tensor network of iPEPS,

both variational optimization and imaginary time evolution
have been shown to work [27,28], and real-time evolution
toward NESSs was also recently demonstrated [15]; the
method presented here may thereby be extended to higher
dimensions.
We note that the imaginary time evolution method

presented here can also apply to finite-size chains by using
TEBD instead of iTEBD, and it would be interesting to
compare the performance of the hybrid method in this
paper with the variational methods [9,11] for finding the
NESSs of finite-size chains.
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