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We introduce a representative minimal model for phoretically interacting active colloids. Combining
kinetic theory, linear stability analyses, and a general relation between self-propulsion and phoretic
interactions in autodiffusiophoretic and autothermophoretic Janus colloids collapses the parameter space
from six to two dimensionless parameters: area fraction and Péclet number. This collapse arises when the
lifetime of the self-generated phoretic fields is not too short, and leads to a universal phase diagram showing
that phoretic interactions generically induce pattern formation in typical Janus colloids, even at very low
density. The resulting patterns include waves and dynamic aggregates closely resembling the living clusters
found in experiments on dilute suspension of Janus colloids.
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Chemical signaling between cells is at the heart of
many of the remarkable self-organization and pattern
formation processes observed in the biological world.
Microorganisms such as Dictyostelium, which excrete
chemicals to which they respond themselves, provide an
illustrative example of signaling-driven pattern formation. If
they swim towards the signaling molecule (chemoattrac-
tion), any local accumulation of microorganisms causes an
enhanced signal production, in turn recruiting further cells.
This creates a positive feedback loop destabilizing the
uniform phase (the Keller-Segel instability [1,2]) and lead-
ing to the formation of clusters which coarsen indefinitely.
We recently found that a chemorepulsive response, where
microorganisms swim away from the chemical they pro-
duce, provides an equally viable, if less intuitive, route to
structure formation, resulting in clusters of self-limiting size,
moving states and traveling waves [3].

A fascinating analog to biological signaling is provided
by the collective behavior of synthetic autophoretic micro-
swimmers. Such swimmers, often fabricated as Janus
colloids, catalyze a chemical reaction on part of their surface
and move in the resulting self-produced gradient by dif-
fusiophoresis, or a similar mechanism. The resulting gra-
dients then also act on other active particles, inducing
chemically mediated (cross-phoretic) many-body inter-
actions. By now, there are several models establishing the
analogy between biological and synthetic signaling also
formally [3-7].

One notable advantage of synthetic signaling swimmers
over their biological counterparts is their conceptual
simplicity and controllable design which should render
parameter tuning simpler, offering new perspectives for
active self-assembly (Fig. 1). Another advantage is that
signaling in synthetic swimmers is not restricted to chemi-
cal interactions: thermophoretic Janus colloids [12], for
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example, act as local heat sources and interact via self-
produced temperature gradients. Despite this, as we shall
see, they can be described by the same equations
and allow access to different pattern forming regimes,
not accessible for chemical signalers.

While it is widely believed that phoretic interactions
between microswimmers can qualitatively lead to interest-
ing collective behavior [3,4,13], little is known about the
strength and relevance of these interactions in practical
examples of autophoretic colloidal suspensions. Most
notably, there are now several theoretically plausible
mechanisms, based on phoretic concepts, driving the
formation of the celebrated, yet mysterious, dynamic
“living” clusters observed in low density suspensions of
active colloids [14—17]. Howeyver, the lack of knowledge of
the magnitude or even sign (attractive or repulsive) of the
colloidal “chemotactic” (or thermotactic) coefficient makes
it difficult to understand whether or not cross-phoretic
interactions really induce the underlying instability.

To clarify this situation, the present work addresses the
question of whether or not chemotactic instabilities are
really there for generic autophoretic colloids. To address
this, we introduce a representative minimal model for such
colloids, the “phoretic Brownian particle” (PBP) model.
The PBP model captures the impact of phoretic interactions
on the orientations of other colloids, disregards additional
but negligible cross-phoretic drift effects [4,6], and only
requires one effective field rather than separate fuel and
product fields.

Combining kinetic theory and linear stability analysis,
we formulate generic instability criteria for Janus colloids
whose phoretic interactions are either attractive (Keller-
Segel instability [1,2]) or repulsive (Janus and delay-
induced instabilities [3]). These criteria involve the
microscopic parameters of the underlying Langevin
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Generic patterns in phoretic Janus colloids: snapshots from particle-based simulations (movies and parameters in the

Supplemental Material [8]). (a—c, movie 1) Attractive phoretic interactions induce clusters at early times (s) which merge (b),
accompanied by a colocated phoretic field (c). (d—f, movie 5) Dynamic clusters induced by repulsive phoretic interactions (d)
surrounded by shells of large phoretic fields (e) which do not coarsen beyond a characteristic size (f). (g1, movies 2—4) Colloidal waves
(g) pursued by self-produced phoretic waves caging the colloids in dense clusters (h); these clusters act as enhanced phoretic producers
leading to phoretic clusters (i) which drive colloids away, and induce escape waves (j). At late times, these wave patterns may settle into
regular moving bands of colloids closely followed by phoretic waves (k,l).

equations, and are robust against short-range repulsions, as
our large-scale particle-based simulations confirm.

As a key result, we unveil a general relation between
self-propulsion and phoretic interactions in self-
diffusiophoretic and self-thermophoretic Janus swimmers.
This collapses the parameter space from six dimensions
(after nondimensionalization) to two dimensions, and
shows that both attractive and repulsive phoretic inter-
actions generically induce structure formation in Janus
colloids. Both are, therefore, generically important for
the collective behavior of Janus colloids. In contrast to
motility-induced phase separation in active Brownian
particles (ABPs) [18] the phoretic patterns we discuss
can occur at very low density providing an appealing
mechanism to explain the onset of living clusters.

We consider N pointlike colloids confined to 2D (quasi-
2D), moving with constant speed v due to self-propulsion
along directions p; = (cos@;,sind;);i = 1,...,N. These
swimming directions change due to rotational Brownian
noise and coupling to a phoretic field ¢ which is generated by
all other colloids. This phoretic field is the one relevant for
self-propulsion—a chemical or temperature field for dif-
fusiophoretic or thermophoretic swimmers, respectively. (It
may involve a combination of fuel and reaction products.)
We define the PBP model by the equations of motion:

(1)
(2)

Here, D, is the rotational diffusion constant and 7 repre-
sents unit-variance Gaussian white noise with zero mean;
axb=a;b,—ayb;. The phoretic field c is produced at

r;(t) = vp;,

0,(t) = pp; x Ve + /2D, 1;(1).

rate ky by each colloid, and f quantifies the coupling to

this phoretic field. When g > 0, particles turn towards the

phoretic gradient produced by other colloids, modeling

chemoattraction in diffusiophoretic colloids, whereas when

f < 0 they swim down the gradient (chemorepulsion).
The phoretic field ¢ evolves as

¢(r,t) =D V?c—kyc+ ZN: j{ dx;6(r—r;(t) — Rox;)o(X;).

3)

While our colloids can be considered as mechanically
pointlike (robustness of our results against short-range
repulsions is shown below), finite particle sizes are crucial
when describing phoretic interactions. Accordingly, the
integral in (3) is over the 3D surface of the Janus colloids
with radius Ry; the production rate density obeys o(x;) =
ko/(27R3) on the catalytic (coated) hemisphere and is zero
elsewhere. Note that our results do not depend on a strictly
hemispherical Janus design but are largely independent
of the coating area and shape [8]. We also introduced the
diffusion constant of the phoretic field D, and allow for
a decay of ¢ with rate k; representing chemical decay or
heat losses to (bottom) container walls (for sedimented
colloids) avoiding a divergence of c. This decay effectively
gives screening effects, which we expect to be small when
chemical decay is slow. To reduce the parameter space, we
choose time and space units as ¢, = 1/D, and x, = R,
leaving us with five dimensionless numbers alongside the
particle density py: (i) the Péclet number Pe = vy/(RyD, ),
measuring the ballistic run length of a colloid in units of
its radius; (ii) B = f/(D,R}) comparing the phoretically
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FIG. 2. First set of four panels (from left): classification of autophoretic Janus colloids by their response to phoretic gradients
(attractive and repulsive) and their swimming direction (cap ahead and behind). Second set of four panels: sketch of the response of
Janus colloids to the fields produced by other colloids with indications of which sign coefficients are required for the Keller-Segel (KS),
Janus (Janus), and delay-induced (delay) instability. Right figure: universal phase diagram for quasi-2D repulsively interacting
autophoretic colloids depending only on Péclet number (Pe) and area fraction (f). Lines show the onset of the delay-induced (blue) and
Janus instability (red); the latter illustrates the case where colloids produce and consume and requires twice as large Pe numbers for pure

producers; see [8].

induced rotation frequency in (an orthogonal) chemical-
thermal unit gradient with rotational diffusion; (iii),
(iv) Ko=ky/D,; K;=ky/D,, comparing production and
decay rates of the phoretic field to D,; and (v) D=
D./(R3D,), which measures the time scale that the
phoretic field needs to diffuse over the radius of a colloid
in units of the inverse rotational diffusion.

To understand the collective behavior of autophoretic
colloids, we systematically derive a continuum theory [8]
generating mean-field equations of motion for the particle
density p(x,7) and the associated polarization density
w(x, 1),

p=—PeV-w,
. Bp Pe Pe? B?|Vc|?
=Wt e vy e -2 D
w w+2 c > ,0~|—16 w 3 w
PeB
+le—6[3(Vw)T Ve — (Ve - V)w —3(V - w)Vel,

é:DV2c+K0p+v%V-W—ch. (4)
Here v =1 for swimmers which move cap behind, and
v = —1 for cap-ahead swimmers (Fig. 2). This model
qualitatively resembles the phenomenological model con-
sidered in [3]; crucially, however, it provides a microscopic
theory here linking all coefficients to microscopic quan-
tities. It also features additional nonlinear terms, which
do not affect the linear stability of the uniform phase and
the corresponding nonequilibrium phase diagram, but do
influence the emerging patterns.

Following [3], we expect different structure formation
scenarios for colloids with attractive and repulsive phoretic
interactions, which we now explore through linear stability
analysis of the uniform solution (p,w,c)=(pg,0,Kop/K )
of (4). Specifically, attractive phoretic interactions induce
the Keller-Segel (KS) instability described in the introduc-
tion if (BKypg)/(PeK,) > 1 [8]. Hence, strong coupling to
the chemical field, fast production, and high particle

density all support this instability. While the KS instability
is well established for microorganisms, our microscopic
derivation shows that it also applies to autophoretic
colloids.

Conversely, for B < 0 colloids effectively repel each
other. If their phoretic production is anisotropic, as for
Janus colloids, there is an instability inducing clusters of
self-limiting size (see [3] for a discussion of the mecha-
nism) which is effective if [8]

—BUKOp0(16D + Pez)

> 1.
(442D + Pe?)?

(5)

Remarkably, besides patterns emerging from the Janus
instability, a delay in the response of the colloidal swim-
ming direction can trigger a cyclic feedback loop resulting
in wave formation [3], if [8]

—Bpy K Pe
Polso <

1.
2D

(6)

To gauge the significance of (5) and (6) for real Janus
colloids, we now reduce the parameter space further. For
typical diffusiophoretic Janus swimmers D~ 10*—10°>>1
(D ~ 10° — 108 for thermophoretic swimmers), suggesting
that the D — oo limit in (5) and (6) is physically relevant.
However, naively taking this limit would rule out phoretic
instabilities altogether. We now show why this approach
is invalid and relate self-propulsion and phoretic cross-
interactions allowing us to eliminate B, D, and K, from our
instability criteria. Consider a test particle exposed to the
phoretic field ¢ produced by other colloids. The gradient of
¢ drives a surface slip velocity on our test particle v,(r,) =
u(r)V)c(r) (in physical units) causing its rotation with a
frequency Q = [3/(2R)](v,(r,) x m) [19] (self-rotations
don’t occur for homogeneous surface coatings). Here,
Vjjc(r)=(I-nn)-Vc(r) is the projection of V¢ onto the
plane tangent to the colloid with unit normal n(r), while
brackets denote the surface average on the test colloid.
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Performing this integration and assuming that V¢ is constant
on the scale of the test colloid (with orientation p) yields
Q = [3v/(8Ry)|(uc — un)p x Vec. Here, pc, uy are the
phoretic surface mobilities on the catalytic and the neutral
hemisphere of the test colloid, and e is the unit vector along
its swimming direction. Comparing our expression for Q
with (2) now yields # = 3v(uc — pn)/(8Ry).

To eliminate from f the (usually unknown) mobility
coefficients, we now calculate the phoretic field produced by
each colloid. We solve the Laplace equation D V?c =0
with boundary conditions —D,.n - V¢ = @, 0 on the catalytic
and neutral caps, respectively, and c¢(r — o) = cy.
This yields in far field c(r)=co+[(aR3)/(2D.r)] +
O[R3/(D.r*)]. Besides acting on other colloids, this field
also drives a (quasi-)slip velocity over the test colloid’s own
surface leading to self-propulsion with v = —(v,(r,)) =
~(u(r)V)e(r)) = v = V| = va(uc + uy)/(8D,) and v =
sgn[(uy + u.)al [19,20]. Combining the former with our
previous expression for f gives = 3u,D.v/(Ryx) with
the reduced surface mobility p, = (uc — pn)/ (e + 1w )-
Finally, we compare our expression for c¢(r) with the
steady-state solution of (3) (screened Poisson equation)
for N =1, c=cq+ [ko/(4nD..)]lexp(—+/ky/D.r)/r]. This
gives ko> 27Rja with equality for k; = 0. Ultimately,
using |u,| ~ 1 for typical Janus colloids at k; =0
and s:=sgn(y,), we find p=6xRyu,vD,.[ky=~
67RysvD,./k, whereas k; > 0 leads to larger § values.
This key result translates to

67sPeD
Ky

(7)

~
~

in dimensionless units and has notable consequences. (i) For
typical laser-heated thermophoretic swimmers, y = 0 [21],
hence B < 0: such swimmers are (thermo)repulsive and
therefore a candidate to observe in the laboratory the patterns
predicted phenomenologically in [3] for repulsive phoresis.
(i1) The parameter B linearly depends on D. Thus, the naive
approach of taking the D — oo limit while keeping B
constant is inconsistent; phoretic patterns should remain
observable even in the limit of fast diffusion. (iii) Crucially,
Eq. (7) allows us to eliminate B from our instability criteria.
Combining Egs. (5)-(7), introducing the quasi-2D area
fraction f = zpy (f = ﬂRépO in physical units), and per-
forming the limit D — oo [22] reduces the Janus and the
delay-induced instability to
—3usPef > 1 and —3sPe’f > 1. (8)
Modulo sign coefficients s and v, these instability criteria
depend only on Pe and f [K|, contributes only indirectly
to (8) via Pe x K(/D and K, is insignificant if decay
processes are not too fast [8]]. This massive parameter
space collapse yields a universal phase diagram (Fig. 2)
in which autophoretic colloids, with typical Pe ~20-200

[14-16], generically form patterns, even at low area
fractions of f ~ 0.01. (The specific form of the emerging
patterns, of course, still depends on all parameters.)
Analogously, Eq. (7) reduces the KS instability for attrac-
tive autophoretic colloids to

6Df > K. (9)

This criterion is fulfilled for D> 1 and K; <1 (see
the Supplemental Material [8] for K; > 1). Hence, for
both self-diffusiophoretic and self-thermophoretic Janus
colloids, cross-phoretic interactions generically destabilize
the uniform phase. This suggests that models based on
purely local interactions such as the ABP model [18,23],
are insufficient to capture the collective behavior of
autophoretic systems; indeed, they predict the onset of
structure formation at much higher area fractions than
found experimentally [14-16].

Note that the PBP model describes only cross-phoretic
alignment interactions and neglects cross-phoretic drifts.
The latter are a separate source of long-range interactions
[4,6], but lead only to order > corrections of our instability
criteria, Eq. (8). Physically, cross-phoretic drifts are insig-
nificant at low densities as colloids drift slower in the 1/7°-
decaying phoretic gradients produced by other colloids
than in their self-produced gradients.

To test our key findings and to explore their robustness
against short-ranged repulsions, we have solved Egs. (1)—(3)
numerically [8]. Attractive phoretic colloids undergo the KS
instability and form small clusters at short times (Fig. 1(a),
movie 1), which merge (b) and produce colocated phoretic
clusters (c); these coarsen, eventually leaving a single
cluster at steady state (not shown). This scenario applies
even for area fractions f <« 0.01 and is insensitive to
parameter variations.

In contrast, repulsive phoretic interactions create a
plethora of structures. In most cases, the delay-induced
instability masks the Janus instability and creates contin-
uously moving patterns. These involve colloidal waves
pursued by self-produced phoretic waves; waves often
morph into clusters and back to waves. At “early” times,
which can last several hours in large systems, the delay-
induced instability creates waves moving along randomly
chosen directions [Fig. 1(g)] which coarsen to a character-
istic scale (h, movies 2-4). When these waves collide
frontally (movies 2 and 3), the pursuing phoretic waves act
as cages for (repulsive) particles, compressing them into
dense clusters (h, blue rectangle). The high particle density
within the clusters enhances the phoretic production,
leading, a short while after, to colocated phoretic clusters
(i). The high phoretic field then expels the colloids,
inducing cluster explosions, initiating new colloidal ring
waves leaving low density regions at the locations of the
former clusters (j). These waves continue to collide gen-
erating a rich pattern of exploding and traveling clusters
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(the latter emerge from less frontal collisions, movie 3) and
of waves sometimes spontaneously changing their direction
of motion. At late times, this type of motion can settle down
into a regular pattern of moving bands which are closely
pursued by self-produced chemical or heat bands; this late-
time pattern can be best observed in elongated simulation
boxes (k,1, movie 4).

Finally, we consider a variant of the PBP model in
which colloids produce a phoretic field on one hemisphere
and consume it with the same rate on the other. This yields
c « 1/7% in far field, but leaves (7) unchanged modulo
order-one prefactors. Such zero-net-production (ZNP)
colloids might mimic self-electrophoretic swimmers in
which a current flows between hemispheres to give a 1/72
far field (see [24]). They might also model Janus particles
whose self-diffusiophoretic motion hinges on a nonlinear
threshold effect as might arise in the laser-induced local
demixing of a binary fluid near the cap [16,25].
Interestingly, for ZNP swimmers the Janus instability is
no longer preempted by the delay-induced instability
(Fig. 2) which requires net phoretic production. Our
simulations (Figs. 1(d—f), movie 5) yield dynamic clusters
which are surrounded by self-produced phoretic shells (e)
and do not coarsen beyond a certain scale, but continu-
ously emerge and disrupt without ever settling into a
steady state. This phenomenology resembles the living
clusters observed in [14,15].

In conclusion, the fact that autophoretic colloids swim
obliges them to form patterns. Both attractive and repulsive
cross-phoretic interactions generically induce structure
formation in self-diffusiophoretic and self-thermophoretic
Janus colloids, even at very low densities. This relies on a
collapse of parameter space, applying when the lifetime
of the phoretic field is not too small compared to the
persistence time of a swimmer.

While we expect that hydrodynamic interactions
[26,27] will not change our finding that phoretic inter-
actions generically destabilize the uniform phase, they
will influence the emerging patterns and, in particular,
their length scales. Similarly, our phase diagram should
be invariant to fuel depletion which might, however,
induce notable late-time effects once dense clusters and
waves have emerged. Hence, further studies will be
needed to clarify the relation between our phoretic
patterns and living clusters.
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