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The Kitaev chain model with a nearest neighbor interaction U is solved exactly at the symmetry point
Δ ¼ t and chemical potential μ ¼ 0 in an open boundary condition. By applying two Jordan-Wigner
transformations and a spin rotation, such a symmetric interacting model is mapped onto a noninteracting
fermion model, which can be diagonalized exactly. The solutions include a topologically nontrivial phase at
jUj < t and a topologically trivial phase at jUj > t. The two phases are related by dualities. Quantum phase
transitions in the model are studied with the help of the exact solution.
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As a prototype of one-dimensional (1D) systems pos-
sessing Majorana zero modes (MZMs) [1] at two edges, the
Kitaev chain model [2] has recently attracted a lot of
attention [3–5]. This noninteracting spinless fermion model
was initially solved in a ring with a periodic boundary
condition. Because of the increased interest in the effect of
the interaction in MZMs [6–15], the model has been
generalized to include a nearest neighbor interaction. As
examined by Fidkowski and Kitaev [16], such an interact-
ing term may give rise to a transition from topological to
trivial phases in one dimension, and the noninteracting
classification of fermionic systems [17–19] may “collapse.”
The interacting Kitaev chain has been studied by many
authors [20–23], including by using numerical methods
[24–31]. On the other hand, the model does not have an
analytic exact solution in the general case. The exact
ground states are available in a special set of tuned
parameters [32]. However, the parameter space in their
solvable model does not include any phase transition point.
In this Letter, we shall present an exact solution to the
interacting Kitaev chain model at a symmetric point (see
Fig. 1). We show that the symmetric model is integrable
and present the solutions of the ground state and all excited
states and demonstrate phase transitions from topologically
nontrivial to trivial phases.
Model.—We consider spinless fermions in a chain of

length L with open boundary condition. The Hamiltonian
of such an interacting Kitaev chain reads

H ¼
XL−1
j¼1

½−tðc†jcjþ1 þ H:c:Þ þUð2nj − 1Þð2njþ1 − 1Þ

− Δðc†jc†jþ1 þ H:c:Þ� − μ
XL
j¼1

�
nj −

1

2

�
; ð1Þ

where cjðc†jÞ is the fermion annihilation (creation) operator

on site j, nj ¼ c†jcj is the fermion occupation number

operator, t is the hopping integral, Δ is the p-wave
superconducting pairing potential, μ is the chemical poten-
tial controlling the electron density, and U is the nearest
neighbor interaction. Without loss of generality, both t
and Δ are chosen to be real and positive. The parameter
transformation of μ → −μ can be realized by the particle-
hole conjugation cj → ð−1Þjc†j . Therefore, μ ¼ 0 corre-
sponds to the particle-hole symmetry, which can be
characterized by the particle-hole conjugation operator
Zp
2 defined as follows:

Zp
2 ¼

Y
j

½cj þ ð−1Þjc†j �; ð2Þ

Zp
2 is conserved if and only if μ ¼ 0. It is easy to verify

that ðZp
2 Þ2 ¼ ð−1ÞL and ðZp

2 Þ†Zp
2 ¼ 1. Hereafter, we shall

assume that L is an even number, so that ðZp
2 Þ2 ¼ 1 and

Zp
2 ¼ �1. Another good quantum number is the fermion

number parity Zf
2 defined as

Zf
2 ¼ eiπ

P
j
nj ¼ ð−1ÞN̂ ; ð3Þ

where N̂ ¼ P
jnj is the number of fermions in the system.

It is obvious that ðZf
2Þ2 ¼ 1 and ½H;Zf

2 � ¼ 0. Both Zp
2 and

Zf
2 will be used to characterize the ground states of the

model Eq. (1) in different phases.

FIG. 1. Phase diagram of the symmetric interacting Kitaev
chain with Δ ¼ t and μ ¼ 0. The Shrödinger-cat-like state (a
superposition of two trivial superconducting states with different
occupation numbers), a topological superconducting state, and a
charge density wave state (defined in text). Two critical points
occur at U ¼ �t.
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At U ¼ 0, the model is reduced to the usual noninter-
acting Kitaev chain model [2], which can be diagonalized
exactly. For interacting cases, U ≠ 0, an exact solution is
not available in the literature so far, except that the ground
states have been constructed by Katsura et al. [32] when
chemical potential μ is tuned to a particular function of the
other parameters (t, Δ, U). In this Letter, we shall study the
interacting Kitaev model at the symmetric point of Δ ¼ t
and μ ¼ 0, and solve the model exactly by giving all the
eigenstates. Note that a similar symmetric model has been
constructed in the context of the Majorana linear chain
without an analytic solution [33].
Majorana fermion representation.—We shall study the

Hamiltonian in Eq. (1) in the Majorana fermion represen-
tation. Following Katsura et al. [32], we split one complex
fermion operator into twoMajorana fermion operators cj ¼
1
2
ðλ1j þ iλ2jÞ and c†j ¼ 1

2
ðλ1j − iλ2jÞ. The Majorana fermion

operators are real ðλaj Þ† ¼ λaj and satisfy the anticommu-
tation relations fλaj ; λbl g ¼ 2δabδjl, where a, b ¼ 1, 2.
Thus, the Hamiltonian in Eq. (1) becomes

H ¼
XL−1
j¼1

�
−
i
2
ðtþ ΔÞλ1jþ1λ

2
j −

i
2
ðt − ΔÞλ1jλ2jþ1

−Uλ1jλ
2
jλ

1
jþ1λ

2
jþ1

�
−
i
2
μ
XL
j¼1

λ1jλ
2
j : ð4Þ

At U ≠ 0, the above Hamiltonian contains both quadratic
and quartic terms, and cannot be diagonalized straight-
forwardly.
Mapping to a noninteracting chain.—The Hamiltonian

in Eq. (4) can be mapped to a noninteracting model
consisting of quadratic terms only, at Δ ¼ t and μ ¼ 0.
The mapping is composed of two Jordan-Wigner trans-
formations [34,35] and a spin rotation. First, we construct
spin operators by the first Jordan-Wigner transformation,

Sxj ¼
1

2
λ1je

iπ
P

l<j
nl ; ð5aÞ

Syj ¼ −
1

2
λ2je

iπ
P

l<j
nl ; ð5bÞ

Szj ¼
i
2
λ1jλ

2
j : ð5cÞ

Thus, the Hamiltonian in Eq. (4) can be written in terms of
spin operators Sxj and Szj,

H ¼
XL−1
j¼1

−4tSxjSxjþ1 þ 4USzjS
z
jþ1; ð6Þ

which is a typical XZ spin chain.
Second, we rotate all the spins by π=2 around the x axis

using the rotation operator R ¼ e−iðπ=2Þ
P

j
Sxj . Then two

new spin operators can be defined as ~Sxj ≔ RSxjR
−1 ¼ Sxj

and ~Syj ≔ RSyjR
−1 ¼ Szj. The XZ chain becomes an XY

chain,

H ¼
XL−1
j¼1

−4t ~Sxj ~Sxjþ1 þ 4U ~Syj ~S
y
jþ1: ð7Þ

Such an XY spin chain has been exactly solved by Lieb,
Schultz, and Mattis with the help of the Jordan-Wigner
transformation [36].
Finally, following Lieb, Schultz, and Mattis, we use the

second Jordan-Wigner transformation,

~Sxj ¼
1

2
~λ1je

iπ
P

l<j
~nl ; ð8aÞ

~Syj ¼ −
1

2
~λ2je

iπ
P

l<j
~nl ; ð8bÞ

~Szj ¼
i
2
~λ1j ~λ

2
j ; ð8cÞ

to transform the XY chain model in Eq. (7) to a quadratic
fermion Hamiltonian, which is given by

H ¼ i
2

XL
j;l¼1

~λ1jBjl
~λ2l ; ð9Þ

where Bjl ¼ 2Uδj;jþ1 − 2tδj;j−1 is a L × L real matrix. ~λ1;2j

can be written in terms of the original Majorana fermion
operators λ1;2j , explictly,

~λ1j ¼
8<
:

�Qj−2
l¼odd iλ

2
l λ

1
lþ1

�
λ1j ; j ¼ odd;�Qj−3

l¼odd iλ
1
l λ

2
lþ1

�
iλ1j−1λ1j ; j ¼ even;

ð10aÞ

and

~λ2j ¼
8<
:

�Qj−2
l¼odd iλ

1
l λ

2
lþ1

�
iλ1jλ

2
j ; j ¼ odd;�Qj−3

l¼odd iλ
2
l λ

1
lþ1

�
λ2j−1iλ1jλ2j ; j ¼ even;

ð10bÞ

With the help of Eqs. (10), one is able to show that ~λ1;2j are
Majorana fermion operators by examining the relations
ð~λaj Þ† ¼ ~λaj and f~λaj ; ~λbl g ¼ 2δabδjl, so that the two sets of

operators fλajg and f~λajg must be related by a unitary
transformation [37].
Thus, when Δ ¼ t and μ ¼ 0, the interacting fermion

model given in Eq. (4) with arbitaryU can be mapped to the
noninteracting fermion model in Eq. (9) through the unitary
transformation given in Eq. (10). This is the central result of
this Letter. Note that Gangadharaiah et al. [6] also pointed
out that the interacting fermion model can be reduced to a
free gapless fermion gas at the critical point U ¼ Δ ¼ t
and μ ¼ 0.
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Exact diagonalization.—The quadratic form of the
Hamiltonian can be exactly diagonalized by singular value
decomposition (SVD) as follows. The nonsymmetric
matrix B given in Eq. (9) can be written in the SVD form
B ¼ UΛVT [32], where Λ is a non-negative diagonal
matrix whose diagonal elements Λk give rise to the
singular values of B. U and V are real orthogonal matrices
and transform the Majorana fermion operators as ~λ1k ¼P

L
j¼1Ujk

~λ1j and ~λ2k ¼
P

L
j¼1 Vjk

~λ2j . The self-conjugate and

anticommutation relations remain the same, ð~λakÞ† ¼ ~λak
and f~λak; ~λbqg ¼ 2δabδkq.
The diagonalized Hamiltonian reads

H ¼ i
2

X
k

~λ1kΛk
~λ2k ¼

X
k

Λk

�
~c†k ~ck −

1

2

�
; ð11Þ

where ~ck ¼ 1
2
ð~λ1k þ i~λ2kÞ and ~c†k ¼ 1

2
ð~λ1k − i~λ2kÞ are complex

fermion operators. Thus, the energy spectrum is given by
Λk, and reads

Λk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt −UÞ2cos2kþ ðtþ UÞ2sin2k

q
; ð12Þ

where each k value gives rise to a single particle eigenstate
in the rotated (~λ) representation, which will be called the “k
mode.” The values of k and corresponding eigenstates can
be determined similar to the noninteracting case [31] (See
the Supplemental Material [38] for details). The spectrum
Λk is gapful except at two quantum critical points U ¼ �t.
There always exist (L − 1) real solutions and a single

complex solution to k. When jUj > t, the complex solution
k ¼ kI0 will give rise to corresponding singular value ΛkI

0
,

which is separated from the bulk energy continuum and has
the asymptotic form at large L as follows:

ΛkI
0
≃

�
1−

				 tU
				
�				 tU

				
L=2

: ð13Þ

When jUj < t, the complex solution k ¼ kII0 will give rise
to the corresponding singular value ΛkII

0
,

ΛkII
0
≃

�
1−

				Ut
				
�				Ut

				
L=2

: ð14Þ

Ground states.—In a finite system, the ground state j0i is
nondegenerate and the energy spectrum is gapped except
U ¼ �t. However, in the thermodynamic limit L → ∞,
Λk0 → 0 exponentially, where k0 ¼ kI0 (kII0 ) for jUj > t
(jUj < t). Thus, the first excited state j1i ¼ c†k0 j0i is
degenerate with the ground state j0i in the thermodynamic
limit.
With the help of the spin XZ model given in Eq. (6),

where long-range spin correlation exists along the Sx or Sz

direction [39], one is able to compute the long-range
density correlation ρij ¼ hð2ni − 1Þð2nj − 1Þi in the bulk
as follows:

lim
ji−jj→∞

ρij ¼

8>><
>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðt=UÞ2

p
; U < −t;

0; jUj < t;

ð−1Þi−j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðt=UÞ2

p
; U > t:

ð15Þ

On the other hand, we have h0jnjj0i ¼ h1jnjj1i ¼ 1
2
.

Therefore, the number fluctuation ΔN can be estimated
for eigenstates j0i and j1i: when U < −t, ðΔNÞ2=N2 →ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðt=UÞ2

p
; otherwise, ðΔNÞ2=N2 ∝ ð1=NÞ. There are

three different parameter regions for the symmetric interact-
ing Kitaev chain model U < −t, −t < U < t and U > t.
(i) When U < −t, the ground state is a Shrödinger-cat-like
(CAT) state, which is a superposition of two trivial super-
conductor states with different occupation numbers,
hN̂i=L∼ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ðt=UÞ2

p
Þ=2 [40]. (ii) When −t < U < t,

the ground state is a topological superconductor (TSC) state.
(iii) When U > t, the ground state is a charge density wave
(CDW) state.
For a finite system, the first excited state j1i can be

distinguished from the ground state j0i by the fermion
number parity Zf

2 and the particle-hole conjugation Zp
2 ,

when j1i is not degenerate with j0i. Since ½Zf
2 ; H� ¼

½Zp
2 ; H� ¼ 0, any nondegenerate eigenstate jΨni of H is

also an eigenstate of Zf
2 and Zp

2 , namely, Zf
2 jΨni ¼ �jΨni

and Zp
2 jΨni ¼ �jΨni. With the help of the exact solution,

one is able to show that (i) when jUj < t, h1jZf
2 j1i ¼

−h0jZf
2 j0i and h1jZp

2 j1i ¼ h0jZp
2 j0i, (ii) when jUj > t,

h1jZf
2 j1i ¼ h0jZf

2 j0i and h1jZp
2 j1i ¼ −h0jZp

2 j0i. Now let
L → ∞ to approach the thermodynamic limit, these Zf

2 and
Zp
2 values can be used to characterize different phases with

two degenerate states j0i and j1i. For the TSC phase, Zf
2

has opposite values (�1) while Zp
2 has the same value in the

two degenerate ground states. For the CDW and CAT
phases, Zp

2 has opposite values while Z
f
2 has the same value.

Then one can draw down the conclusion that the zero mode
obtained in the TSC phase is a fermionic mode since it is
made of odd number of fermions, while the zero mode
obtained in the CDW or CAT phase is bosonic.
Duality symmetries.—There exist interesting dual rela-

tions between jUj > t and jUj < t phases when Δ ¼ t and
μ ¼ 0, which impose quantum critical points at U ¼ �t.
Such dualities can be seen clearly by rewriting Eq. (9) as
follows:

H ¼ i
2

�XL−1
j¼1

2t~λ2j ~λ
1
jþ1 þ 2U~λ1j ~λ

2
jþ1

�
: ð16Þ

For U > 0, by interchanging the Majorana fermion
operators in Eq. (16),

~λ1j ↔ ~λ2j ; ð17aÞ
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Hamiltonian H has the same form with parameters
changes as

t ↔ U: ð17bÞ
Thus, the duality between TSC and CDW phases has been
established and U ¼ t must be the phase transition point
separating these two phases.
For U < 0, by interchanging the Majorana fermion

operators as follows,

~λ1j ↔ ð−1Þj ~λ2j ; ð18aÞ

H will keep the same form with parameter changes as

t ↔ −U: ð18bÞ
Equations (18) set up the duality between TSC and CAT
phases, and U ¼ −t must be the critical point separating
these two phases.
It is interesting that the fermion number parity Zf

2 and the
particle-hole conjugation Zp

2 will interchange to each other
under the duality transformations. In order to see this, we
rewrite Zf

2 and Zp
2 in terms of ~λaj ,

Zf
2 ¼

YL−1
j¼odd

ði~λ1j ~λ2jþ1Þ; ð19aÞ

and

Zp
2 ¼

YL−1
j¼odd

ði~λ2j ~λ1jþ1Þ: ð19bÞ

Therefore, we have the dual relation,

Zf
2 ↔ Zp

2 : ð20Þ
It is noted that the fermion number parity in the rotated
representation ~Zf

2 is self-dual, say,

~Zf
2 ↔ ~Zf

2 : ð21Þ
Phase transitions.—The exact solution to the

Hamiltonian H also allows us to explore the quantum
phase transition between neighboring phases. The bulk spin
correlation functions for the XY spin chain have been
evaluated by McCoy [39] as well as Capel and Perk [41]. In
a previous paper, we proposed to use an edge correlation
function to characterize the phase transition between the
TSC and SC phases [31], which is defined as follows:

G1L ¼ hiλ11λ2Li: ð22Þ
In the rotated representation, it reads

G1L ¼ hi~λ11 ~λ2L ~Zf
2Z

f
2i: ð23Þ

The detailed calculations for G1L can be found in the
Supplemental Material [38]. For a generic ground state in

the thermodynamic limit, the edge correlation function
behaves as follows:

lim
L→∞

G1L ∝


1 −

�
jUj
t

�
2
; jUj < t;

0; jUj ≥ t:
ð24Þ

The edge correlation function G1L is finite only in the TSC
state in the thermodynamic limit. Around the quantum
phase transition points U ¼ �t,

G1L ∝ ðt − jUjÞz; ð25Þ
with critical exponent z ¼ 1, which is the same as that for
the TSC to SC transition.
In summary, we have studied in this Letter the interacting

Kitaev chains with an open boundary condition at the
symmetric case Δ ¼ t and μ ¼ 0. Exact solutions of all the
eigenvalues and corresponding eigenstates are obtained.
We find three different ground states: a Shrödinger-cat-like
state at U < −t, a topological superconducting state at
−t < U < t, and a charge density wave state at U > t.
Duality symmetries between the CAT and TSC and
between TSC and CDW are found. The quantum phase
transitions in the system are described by the edge
correlation function, and the critical exponent is found to
be z ¼ 1. In addition to the ground state properties
discussed in this Letter, dynamics, thermodynamics, and
spectral function can also be studied through the exact
solution. The interaction effect in the TSC phase can be
observed by measurement of tunneling conductance
dI=dV ∝ ρð1;ωÞ at the edge. The edge density of states
ρð1;ωÞ is of the form ρð1;ωÞ ¼ AδðωÞ þ BðωÞθðω − ΔgÞ,
where Δg is the bulk energy gap, A ∝ 1 − ðU=tÞ2 and
BðωÞ ∝ ωðω2 − Δ2

gÞα with α → 1
2
when U → 0 and α →

− 1
2
when jUj → t. The transition from positive to negative

value of α exhibits a qualitative difference in spectra
and can be observed in tunneling experiments. Such a
drastic transition within the TSC phase (see Supplemental
Material [38] for details) suggests that the dynamic
properties associated with excited states may undergo a
transition although the ground states are protected by the
energy gap.

This work is supported in part by National Key
Research and Development Program of China
(No. 2016YFA0300202), National Basic Research
Program of China (No. 2014CB921201/2014CB921203),
NSFC (No. 11374256/11674278), and the Fundamental
Research Funds for the Central Universities in China.
F. C. Z was also supported by the University of Hong
Kong's Grant Council via Grant No. AoE/P-04/08.

Note added.—Recently, we received a note from Katsura,
in which it was implied that the interacting fermion model
can be reduced to a noninteracting fermion model at a
symmetric point [42].
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