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Phase-filling singularities in the optical response function of highly doped (>1019 cm−3) germanium are
theoretically predicted and experimentally confirmed using spectroscopic ellipsometry. Contrary to direct-
gap semiconductors, which display the well-known Burstein-Moss phenomenology upon doping, the
critical point in the joint density of electronic states associated with the partially filled conduction band in
n-Ge corresponds to the so-called E1 and E1 þ Δ1 transitions, which are two-dimensional in character. As a
result of this reduced dimensionality, there is no edge shift induced by Pauli blocking. Instead, one observes
the “original” critical point (shifted only by band gap renormalization) and an additional feature associated
with the level occupation discontinuity at the Fermi level. The experimental observation of this feature is
made possible by the recent development of low-temperature, in situ doping techniques that allow the
fabrication of highly doped films with exceptionally flat doping profiles.
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van Hove critical point singularities in the valence-
conduction joint density of states (JDOS) manifest them-
selves as sharp features in the complex optical dielectric
function εðEÞ of crystalline solids [1]. Additional structure
arises in metallic systems due to the abrupt change in the
occupation number at the Fermi level EF [2]. Similar phase-
filling singularities are, in principle, expected in highly
doped semiconductors. However, most semiconductor stud-
ies so far have focused on direct-gapE0 transitions involving
a three-dimensional (3D) maximum in the valence band and
a 3D minimum in the conduction band, which give rise to a
3D minimum in the JDOS. For thisM0 critical point, which
corresponds to the fundamental band gap in many III-V
and II-VI compounds, Pauli blocking suppresses transitions
involving states between the band edge and EF, so that only
transitions to states beyond EF contribute to the dielectric
function. Experimentally, this means that a single critical
point feature is expected at an energy that increases
monotonically as a function of doping. This phenomenology
is usually described as a Burstein-Moss “shift” [3,4]. The
observation of separate band-structure and phase-filling
singularities has not been reported for doped semiconduc-
tors. The essential requirement for their observation is a
lower-dimensionality JDOS critical point structure associ-
ated with the band extrema. A prototypical candidate is Ge,
forwhich the so-calledE1 andE1 þ Δ1 transitions involving
the bottom of the conduction band are two-dimensional in
character. However, in spite of studies spanning several
decades [5–8], no clear experimental evidence for a phase-
filling singularity has emerged for Ge or for any other
material with a similar band structure. Part of the reason is
that the high donor levels needed to observe the effect are

usually achieved by implantation or recrystallization meth-
ods. The structural quality of suchmaterial is clearly inferior
to that of pristine Ge, and the doping profiles are hardly
uniform. This smears out the singularities and makes it
difficult to differentiate between optical effects induced by
doping and those related to the introduction of defects. Very
recently, however, there has been a revival of interest in
n-typeGe as a possible laser gainmedium, and this has led to
the development of new in situ doping methods [9–13] that
preserve the crystal quality and make it possible to obtain
extremely flat doping profiles. In this Letter, we report the
observation of phase-filling singularities in such in situ-
doped n-type Ge films.
The experimental accessibility of phase-filling singular-

ities clearly separated from band-structure singularities
could provide new impetus to studies of many-body effects
at the Fermi level, a subject of great current interest [14–20].
Furthermore, the observations reported here are not neces-
sarily limited to the peculiar band structure of doped Ge.
Materials that have attracted recent theoretical attention due
to their possible nontrivial topological properties, such as
GaBi and InBi [21], and perhaps even α-Sn [22], are
predicted to have occupied states similar to those of doped
Ge, so that the spectroscopic approach reported here may
contribute to unraveling their intriguing electronic structure.
All doped Ge samples were grown on i-Ge-buffered Si

substrates produced in a gas source molecular epitaxy
reactor using Ge4H10 at around 350 °C [23]. P-doped
samples with n < 4 × 1019 cm−3 were grown in the same
reactor using mixtures of Ge4H10 and PðGeH3Þ3. Highly
doped samples (n ≥ 4 × 1019 cm−3) were grown in a hot-
wall CVD reactor at 330 ° − 340 °C using mixtures of

PRL 118, 267402 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
30 JUNE 2017

0031-9007=17=118(26)=267402(5) 267402-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevLett.118.267402
https://doi.org/10.1103/PhysRevLett.118.267402
https://doi.org/10.1103/PhysRevLett.118.267402
https://doi.org/10.1103/PhysRevLett.118.267402


Ge3H8 and PðGeH3Þ3 or SbD3. Typical n-layer thicknesses
were 200 nm. Secondary ion mass spectroscopy (SIMS)
measurements revealed flat dopant profiles and sharp
transitions at the n=i interfaces. Doping levels were
determined by infrared ellipsometry, Hall, and SIMS
measurements. Carrier concentrations determined by all
methods agree well, and all samples showed almost full
dopant activation [24].
The εðEÞ function was determined using two JA

Woollam™ UV-vis variable angle spectroscopic ellipsom-
eters. Low-temperature measurements were conducted at
an incident angle of 70° and energy steps of either 0.005 or
0.010 eV. Room temperature measurements were usually
conducted at a 0.005 eV step size for three different
incidental angles (65°, 70°, and 75°). The measurements
yield the ellipsometric anglesΨðEÞ andΔðEÞ, and these are
described using a multiple-layer model that incorporates
the substrate, the buffer layer, a thin transition layer
between the buffer and doped film, the doped film itself,
and a roughened (∼1–2 nm) GeO2 layer at the surface. The
function εðEÞ for the doped film was first adjusted to
the data using a parametric model (Ref. [25]). For this fit,
the dielectric functions for the remaining layers were taken
from ellipsometer manufacturer’s database. In the case of
GeO2, we used data from Hu et al. [26]. The adjustable
parameters of the fit are the layer thicknesses and all
constants in the parametric model for the doped layer. In a
subsequent fit stage, we keep the thicknesses from the
initial fit and fit again the dielectric function of the doped
layer, this time without assuming any theoretical model but
using the real (ε1) and imaginary (ε2) parts of the εðEÞ at
each energy as adjustable parameters. The resulting fit
values are used as seed parameters for the next energy
values, and, by following this “point-by-point” procedure,
εðEÞ is obtained over the entire energy range.
Second and higher derivatives of εðEÞmake it possible to

isolate the contributions from critical points. Because of the
unavoidable presence of noise, however, numerical filters
must be used for data differentiation. The Savitzky-Golay
(SG) method [27–29] is an excellent option, because it
removes noise while preserving the line shape of narrow
features. For this work, however, we found that a regu-
larization method [30] produces somewhat better results.
We minimize an objective function that contains a term
proportional to the square of the fourth derivative of the
data times a weighting parameter λ, so that for λ ¼ 0 one
recovers the original data. We use the largest possible value
of λ [typically, λðΔEÞ−8 ¼ 1018, where ΔE is the energy
step] for which the line shape of the main features of the
numerical second derivative matches the line shape
obtained under SG differentiation. For such a value of λ,
the noise is visibly reduced relative to the SG case.
Figure 1 shows the relevant portions of the Ge band

structure calculated using the k · p method of Ref. [31]. In
n-type Ge, electrons accumulate in the conduction band

that has a minimum at L ¼ ðπ=a0Þð1; 1; 1Þ, where a0 is the
cubic lattice constant. This minimum is clearly 3D but
highly anisotropic, with a longitudinal effective mass of
1.58m (left panel) and transverse effective mass of 0.083m
(right panel) [32]. The top valence band right below this
conduction band runs very parallel to the above conduction
band for a distance kmax ∼ π=a0 along the [111] direction
(measured from the L point), giving rise to a critical point in
the JDOS that manifests itself as the sharp E1 structures in
the dielectric function of Ge at E1 ¼ 2.2 eV. For all
realistic levels of doping, the Fermi vector kF along the
[111] direction (measured from the L point) satisfies
kF < kmax, so that Pauli blocking will suppress some but
not all transitions at energy E1. This is a crucial difference
with the total suppression of transitions at the gap energy
E0 in direct-gap semiconductors such as GaAs.
Since the conduction and valence bands run parallel from

k ¼ L to k ¼ kmax, the critical point can be approximated
as a two-dimensional (2D) minimum. Its contribution to ε2
was given by Cardona [33]. For the case of n-type Ge, the
expression can be generalized [34,35] to

ε2ðEÞ ¼
8e2P̄2μ⊥
3m2E2

HðE − E1Þ
Zkmax

−kmax

dkzf1 − f½EcðE; k2zÞ�g:

ð1Þ
In Eq. (1), P̄2 is the square of the average momentum

matrix element, and μ⊥ is the transverse reduced electron-
hole mass. A value of P̄2=m ¼ 12.9 eV reproduces the
experimental value ofm⊥ using the k · p theory [33]. At the

FIG. 1. Band structure of Ge calculated with the k · pmethod of
Ref. [31], highlighting the region corresponding to the E1 and
E1 þ Δ1 transitions. For the E1 case, we show schematically the
effect of Pauli blocking following n-type doping. Red indicates
forbidden transitions at T ¼ 0. Green shows allowed transitions
at T ¼ 0. Darker greens correspond to higher energies.
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same level of the theory, one obtains μ−1⊥ ¼
ðP̄2=m2Þ½2=E1 þ 1=ðE1 þ Δ1Þ� for the E1 gap and μ−1⊥ ¼
ðP̄2=m2Þ½1=E1 þ 2=ðE1 þ Δ1Þ� for the E1 þ Δ1 gap. HðxÞ
in Eq. (1) is the Heaviside step function, and f (E) the
Fermi function, whose argument is given by

EcðE; k2zÞ ¼
ℏ2k2z
2m∥

þ ðE − E1Þ
μ⊥
m⊥

ð2Þ

if EF is measured from the bottom of the conduction band.
At temperature T ¼ 0, Eq. (1) gives

ε2ðEÞ ¼
16e2P̄2μ⊥
3m2E2

HðE − E1Þkmax

8<
:

1 for E > E1 þ m⊥
μ⊥ EF

1 − 1
kmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m∥
ℏ2 ½EF − ðE − E1Þ μ⊥

m⊥�
q

for E < E1 þ m⊥
μ⊥ EF:

ð3Þ

This function is plotted in Fig. 2(e), and we see that Pauli
blocking “removes” the upper corner of ε2ðEÞ, thereby
creating a new singularity at E ¼ E1 þ ðm⊥=μ⊥ÞEF. At
nonzero temperatures the integration in Eq. (1) can be
performed numerically, and the phase-filling singularity is
found to be broadened by the smearing of the Fermi
function, as shown in Fig. 2(f) for T ¼ 77 K. In this panel,
we have also applied the experimental broadening of the E1

transition at the same temperature [36,37]. The second
derivative of ε2 is shown in Fig. 2(g), with a clear feature
(highlighted with an arrow) associated with the phase-
filling singularity. The contribution of the E1 transition to
the real part ε1 of the dielectric function can be obtained
from the imaginary part by utilizing the Kramers-Kronig
(KK) relations. The real part of ε1 at a given energy E
contains contributions from optical transitions over the
entire spectral range. However, only those transitions
around E contribute sharp features near E, so that the
second derivative of the KK transform of Eq. (3) should be
comparable to the second derivative of the ε1 obtained as a
KK transform of the entire ε2ðEÞ. The KK transform of
Eq. (3) is shown in Fig. 2(a). The corresponding calculation
for T ¼ 77 K appears in Fig. 2(b), and Fig. 2(c) shows the
second derivative, with a clear feature corresponding to the
phase-filling singularity, highlighted by an arrow.
The experimental observation of doping effects on εðEÞ

is not as straightforward as in the above discussion due to
the presence, next to the E1 critical point, of a second
critical point associated with the E1 þ Δ1 transition
between the second valence band in Fig. 1 and the
conduction band. The E1 þ Δ1 contribution to ε2ðEÞ is
given by an expression identical to Eq. (1), but, since
E1 þ Δ1 appears at higher energies thanE1, it overlaps with
the Fermi-level feature associated with the E1 transition
that we calculated in Fig. 2. Figures 2(d) and 2(h) show the
calculated second derivatives including both transitions.
The phase-filling feature corresponding to the E1 transition
manifests itself as subtle changes in the line shape of the
E1 þ Δ1 contribution, and only the phase-filling features
associated with the E1 þ Δ1 transition are easy to observe,
as indicated by the arrows. An additional complication is
that in the undoped case Eq. (1) gives a poor description of

FIG. 2. Calculated real (blue curves) and imaginary (red curves)
parts of the dielectric function and their second derivatives near
the E1=E1 þ Δ1 gaps of intrinsic and doped Ge. The top three
panels (a)–(c) and (e)–(g) on each side show only the E1

contribution to better illustrate the effect of doping. The bottom
panels (d) and (h) incorporate the full E1=E1 þ Δ1 for a
comparison with the experiment. The arrows mark the position
of the extra features due to doping. In all cases, the gray curves
correspond to the undoped case.
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the experimental dielectric function, because it does not
include excitonic effects. These are usually accounted for
by multiplying Eq. (1) times an amplitude A and by
additionally incorporating a phase factor expðiϕÞ in the
expression for the complex dielectric function, which
effectively mixes real and imaginary parts.
Figure 3(a) shows the imaginary part ε2 of the dielectric

function for films with different levels of P doping. As
predicted in Figs. 2(e) and 2(f), we see a monotonic overall
decrease in ε2 as a result of Pauli blocking. Furthermore,
whereas in pure Ge ε2 decreases rapidly at energies above
the two critical points, we observe an increase in the doped
samples, also as predicted in Figs. 2(e) and 2(f). In analogy
with our treatment of the model calculation, we can gain
more insight into the doping effects by computing second
derivatives of the experimental dielectric function. The
results are in Figs. 3(b) and 3(c). We notice the appearance
of a feature in both the real and imaginary parts that is very
similar to the predicted phase-filling singularity, as shown in
Figs. 2(d) and 2(h). To make the connection between the

theory and experiment more quantitative, we carried out a fit
of the experimental data using expressions based on Eq. (1).
We first calculate the Fermi level corresponding to the
dopant concentration in our sample using a model that
includes not only the L valley but also the Γ and X valleys.
The value of EF is then inserted into Eq. (1) to obtain the E1

and E1 þ Δ1 contributions to ε2. To simulate lifetime broa-
dening effects, ε2ðEÞ is convoluted with a Lorentzian. The
ε1ðEÞ function is obtained from a KK transform. For this
model, the adjustable parameters of the fit are therefore the
energy, Lorentzian width Γ, and the amplitude parameters A
for the E1 and E1 þ Δ1 transitions, plus a common phase
angle ϕ. The fits are repeated for different values of the
dopant concentration until a best fit is found. The carrier
concentrations that give this best fit are indicated in
panel 3(b) below each curve.
The agreementwith the theory is quite remarkable.We are

able to predict the energy position of the phase-filling
singularity in both the real and imaginary parts using carrier
concentrations within a factor of 2 of the experimental
values. Furthermore, we also reproduce the temperature
dependence of the feature [24]. Even in the case of the lowest
doped sample (n ¼ 2.5 × 1019 cm−3), in which no separate
peak is observed, we see an additional broadening of the
E1 þ Δ1 structure that indicates the presence of the Fermi
level feature. In this context, it is interesting to note that the
earlier data from Ref. [7] also show a distinct additional
broadening of theE1 þ Δ1 transition relative toE1 transition
in a highly doped sample. Our results suggest that this
apparent extra broadening is caused by the merger of the
E1 þ Δ1 transition and phase-filling feature. Our theory
predicts noBurstein-Moss upshifts forn-typeGe, and in fact
we observe a downshift of up to 0.18 eVin the energies of the
E1 and E1 þ Δ1 main transitions, which is due to band gap
renormalization upon doping [38]. A full account of
renormalization effects will be published elsewhere.
The phase factors that give the best fit of the data are

quite large. For pure Ge, we obtain ϕ ¼ 105°, as evidenced
by the very different line shapes in Figs. 3 and 2 (the latter
corresponds to ϕ ¼ 0°). The phase angle decreases mono-
tonically as a function of the doping concentration, as
previously observed [7]. For the highest-doped sample in
Fig. 3, we obtain ϕ ¼ 35°. The smaller phase angle
manifests itself as a better agreement between the measured
line shapes and the predictions from Fig. 2. This is
consistent with the screening of the excitonic interaction
by the free carriers. The phase factor might be further
reduced by computing the dielectric function directly from
the band structure, rather than from a model density of
states, but this would drastically increase the complexity of
the fit. Fortunately, we note that in Fig. 2 the phase-filling
features have a similar line shape in the real and imaginary
parts, so that these features are rather insensitive to the
mixing induced by a phase factor. The amplitude A remains
near 2–3 for all samples, which means that the ε2 reduction

FIG. 3. (a) Imaginary part of the 77 K dielectric function for
several n-type Ge films. The lower panels show second deriv-
atives of the complex dielectric function of the above films. The
solid lines represent simultaneous fits of the real and imaginary
parts with an expression derived from Eq. (1). Traces are
vertically offset by 700 eV−2 each for clarity. (b) Real parts.
The doping levels that produce the best fit are indicated below the
corresponding traces. (c) Imaginary parts.
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in Fig. 3 is entirely accounted for by Pauli blocking. The
values of A are consistent with the excitonic enhancements
observed at other transitions, but the reason why they do
not decrease as a function of doping is unclear, particularly
in view of the observed decrease in ϕ. This behavior could
indicate the need for a more refined treatment of broad-
ening, or it could be viewed as evidence for additional
excitonic effects in doped systems, such as the so-called
Mahan exciton, which should be a subject of further
studies [39].
In summary, we have predicted and observed phase-

filling singularities in the dielectric function of highly
doped n-type Ge films. The experimental data are satisfac-
torily explained with an expression that accounts for Pauli
blocking. These results provide sensitive information on
the conduction band of n-type Ge and open up a new
spectroscopic tool to study carrier-exciton interactions in
heavily doped systems.
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