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The quantum spin liquid material herbertsmithite is described by an antiferromagnetic Heisenberg model
on the kagome lattice with a non-negligible Dzyaloshinskii-Moriya interaction (DMI). A well-established
phase transition to the q ¼ 0 long-range order occurs in this model when the DMI strength increases, but
the precise nature of a small-DMI phase remains controversial. Here, we describe a new phase obtained
from Schwinger-boson mean-field theory that is stable at small DMI, and which can explain the
dispersionless spectrum seen in the inelastic neutron scattering experiment by Han et al. [Nature (London)
492, 406 (2012)]. It is a time-reversal symmetry breaking Z2 spin liquid, with the unique property of a
small and constant spin gap in an extended region of the Brillouin zone. The phase diagram as a function of
DMI and spin size is given, and dynamical spin structure factors are presented.
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Frustration in quantum magnets is a captivating and
everlasting story. Competing interactions can lead to
unconventional phases such as spin liquids (SL). After
the first proposal by Anderson [1] of a quantum SL in the
S ¼ 1=2 Heisenberg model on the triangular lattice as a
zero temperature disordered state, this notion has been
greatly refined. A large number of such exotic phases have
been discussed, notably on the antiferromagnetic kagome
lattice, characterized by fractional symmetry quantum
numbers [2,3].
Herbertsmithite is a paradigmatic material strongly

suspected to host a SL. It was first synthesized in 2005
[4] and has since been subject to numerous experi-
mental studies [5–12] (see [13] for a recent review).
Herbertsmithite remains disordered down to very low
temperatures, and it is described by an antiferromagnetic
spin-1=2 Heisenberg model on the kagome lattice with
strong nearest-neighbor interaction, H0 ¼ J

P
hi;jiSi · Sj,

J ≃ 200 K.
In view of the various proposed ground states, it appears

that the low-energy physics is quite rich and that even small
deformations of this idealized Hamiltonian can have crucial
effects. Several perturbations are known to exist. Impurities
are physically unavoidable [11] and theoretically challeng-
ing [14]. Here, we focus on the Dzyaloshinskii-Moriya
interaction (DMI) [15–17]. Its value has been experimen-
tally estimated to D≃ 0.08J [8]. Theoretical studies [18–
24] have concluded that a transition occurs between a
small-D disordered phase and a q ¼ 0 Néel state at
D≳ 0.1J. But the precise nature of the disordered phase
at small D is still unclear.
Here we describe a new chiral SL within the framework

of Schwinger-boson mean-field theory (SBMFT) as a

strong candidate for the phase realized in herbertsmithite.
The state has a unique property: the bottom of the spin
excitation continuum is flat over an extended quasicircular
region of the Brillouin zone. We compute the dynamical
structure factor and confront it with data of Han et al. [10]
and with the theory by Punk et al. [25].
Dzyaloshinskii-Moriya interaction.—The DMI [15,16]

is a consequence of spin orbit coupling and comes from a
broken mirror symmetry. It is characterized by vectors
Dij ¼ 2Jθijdij on oriented links (Dij ¼ −Dji), where dij ¼
dji has unit length. The total spin interaction on link (ij)
is [17,26]

hij ¼ JS0
i · S

0
j; ð1Þ

where S0
i and S0

j are obtained from the original spins
by rotations around the dij axis with angles θij and −θij,
respectively. In the following, we set J ¼ 1. The
Hamiltonian is the sum over nearest-neighbor link
energies,

H ¼
X

hi;ji
hij: ð2Þ

When the composition of these rotations around a lattice
loop is identity, then all nontrivial angles θij can be
removed by a unitary transformation and the spectrum is
unaffected [29,30]. Otherwise, the effect of nonzero θ ¼
jθijj depends on the geometry of the lattice. For example,
on the antiferromagnetic square lattice, spins are unfrus-
trated and θ increases the ground state energy by intro-
ducing frustration. On the kagome lattice, the presence of
loops with an odd number of sites (triangles) maximally
frustrates antiferromagnetic interactions. In this case, a
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nonzero θ decreases the ground state energy by reducing
frustration.
Using crystal symmetry considerations, we can restrict

the set of possible Dij. In herbertsmithite, it has constant
modulus and is perpendicular to the (ij) link. Electron
spin resonance measurements evaluated Dij to be mainly
perpendicular to the kagome plane and of order D ¼
jDijj≃ 0.08 (θ≃ 0.04) [8]. The direction of Dij on a
reference link fixes all the other directions (Fig. 1). The
tripartite nature of the lattice implies a π=3 periodicity in θ
(up to a sublattice-dependent spin rotation). Since θij and
−θij are equivalent up to a mirror reflection, we can limit
our study to 0 ≤ θ ≤ π=6. The Hamiltonian of Eq. (2)
breaks some symmetries of the pure Heisenberg model: σ
(lattice mirror symmetry) and SU(2) spin rotations. The
preserved symmetries (Fig. 1) are generated by V1 and V2

(lattice translations), R6 (lattice rotation of order 6), σSπx
(mirror symmetry σ combined with a spin rotation of π
around the x axis), U(1) spin rotations around the z axis,
and T (time-reversal symmetry).
For classical spins, DMI immediately lifts the extensive

ground state degeneracy of the Heisenberg model to the
planar q ¼ 0 state of one of the two possible vector
chiralities S1 ∧ S2 [18] [but the scalar chirality χ123 ¼
S1 · ðS2 ∧ S3Þ remains zero]. In the quantum S ¼ 1=2
model, a transition from a SL to this q ¼ 0 long-range
order is expected at D ¼ Dc, where Dc ≃ 0.1 [19–21]. In
the following, we elaborate on how to construct an elegant
mean-field theory including DMI.
SBMFT and chiral phases.—In terms of the bosonic

spinon aiα of spin α ∈ f↑;↓g on site i, the spin operator
reads as Si ¼ 1

2
a†iασαβaiβ, where σ are the Pauli matrices.

The boson number is constrained to

X

α

a†iαaiα ¼ 2S: ð3Þ

In the mean-field theory, this constraint is enforced on
average with the help of a Lagrange multiplier λ.
We define two operators on each link (j, k):

Ajk ¼
1

2
ðe−iθjkaj↑ak↓ − eiθjkaj↓ak↑Þ; ð4Þ

Bjk ¼
1

2
ðeiθjka†j↑ak↑ þ e−iθjka†j↓ak↓Þ: ð5Þ

For θ ¼ 0, Ajk and Bjk are invariant under global spin
rotation. For θ > 0, this invariance is reduced to rotations
around the z axis. The link interaction, Eq. (1), can be
written as

hij ¼ ∶B†
ijBij∶ − A†

ijAij ð6Þ
¼ S2 − 2A†

ijAij; ð7Þ
where ∶∶means normal ordering. Two different mean-field
approximations can be developed using either the two
parameters Aij ¼ hAiji and Bij ¼ hBiji, and Eq. (6) (AB
formalism):

hAB
ij ¼ B�

ijBij −A�
ijAij þ H:c: − jBijj2 þ jAijj2; ð8Þ

or Eq. (7) and the parameter Aij only (A formalism).
Equations (6) and (7) are identical in spin space when
the constraint Eq. (3) is exactly imposed. But in the
enlarged Hilbert space of bosons where the constraint
is only respected on average, they differ by a term
∝ ðni − 2SÞðnj − 2SÞ, related to the boson-number fluctua-
tions. TheA formalism leads to inconsistencies, which have
been discussed in detail for triangular and square lattices
[31,32]. SBMFT has previously been used in attempts to
describe DMI [20,21,33]. For the kagome lattice, however,
this has only been done in the A formalism so far.
In order to reduce the total number of link parameters,

we use the notion of projective symmetry group [34,35].
This analysis has recently been extended to SLs where time
reversal T can be broken, but where lattice symmetries (or
their composition with T ) are preserved [36–38]. Here, we
restrict ourselves to Ansätze respecting the symmetries
of Eq. (2) in this sense (Fig. 1). We thus consider the
generators V1, V2, T pRR6, and Tpσ σSπx, with pσ, pR ¼ 0
or 1. This results in 20 Ansatz families listed in Table I.
In all these cases, Aij and Bij on a reference link are
propagated to the entire lattice by rules that depend on pR
and a parameter p1 (¼ 0 or 1) related to the presence of an
additional π flux through elementary tiles of the lattice.
For each family, an Ansatz is characterized by two to four
continuously adjustable parameters, corresponding to
modulus and argument of Aij and Bij on the reference
link, named jAj, ϕA, jBj, and ϕB. These parameters are
adjusted until self-consistent saddle point solutions are
found. In some families, ϕA and ϕB are restricted by
discrete parameters pA and/or pB (¼ 0 or 1). The resulting

FIG. 1. The kagome lattice and its symmetries (in dark green).
The orientation of theDij (Dzyaloshinskii-Moriya) vectors on the
directed links is out of plane. The unit cell of the Ansatz (light
green) contains six sites. Red and blue arrows represent first-
neighbor links wearing mean-field parameters Aij and Bij, equal
to jAj and jBjeiϕB on red links, and jAjeiϕA and jBjeið1−2pRÞϕB on
blue links, with an additional phase p1π on light red bonds.
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link parameters are described in Fig. 1 and in the last two
columns of Table I.
Note that the families shown in Table I possess common

Ansätze. Clearly, p1 discriminates two Ansätze only when
one of jAj or jBj is nonzero, while pR and pσ distinguish
two Ansätze with identical p1 only when ϕA or ϕB is
nontrivial (≠ 0 or π). Some families can break T due to
nontrivial ϕA or ϕB. In this case, fluxes through lattice
loops take nontrivial values leading to nonzero scalar spin
chiralities. With Eq. (2), we do not find any self-consistent
solution with ϕB ≠ π. As a result, the A1, A2, and A3

families never break T . Only a nontrivial ϕA (allowed in
the families A4) may break it.
On the kagome lattice, scalar chirality χ123 is usually

associated with elementary triangles. In our framework,
chiral Ansätze with pR ¼ 0 have uniform scalar chirality,
while those with pR ¼ 1 have chiralities of the opposite
sign on up and down triangles. This implies that a nonzero
global (i.e., a macroscopic) chirality is only possible for
pR ¼ 0. However, since χ123 is related to the imaginary part
of ðjBjeiϕBÞ3, this is always trivial since we find ϕB ¼ π.
Thus, none of our solutions exhibit a macroscopic chirality.
In the following, we shall call chiral state any

T -breaking Ansatz, even in the absence of a macroscopic
chirality. In such Ansätze, some χ123 are nonzero, e.g.,
for three consecutive sites of a hexagon. One could
argue that the flux through a hexagon, 6ϕBð1−pRÞþp1π
(phase of B12B23…B61), is still trivial. However, for loops
with even parity, we can also consider the A-flux
arg½A12ð−A�

23Þ…A56ð−A�
61Þ�¼3ϕAþp1πþπ. These two

fluxes differ by their behavior under R6 rotation: the B
flux is invariant, while the A flux changes sign. Thus, a
nontrivial B flux (only possible when pR ¼ 0) characterizes
a uniform chirality, χ123 ¼ χ234, while a nontrivial A flux
(only possible when pR ¼ 1) characterizes a staggered
chirality, χ123 ¼ −χ234. Note that, in the presence of a DMI,
these fluxes contain θ in addition to the mean-field
parameters, indicating a modified flux-chirality relation.
The existence of chiral phases as ground states [39–41]

is already evident in the classical limit: an infinitesimal
antiferromagnetic third-neighbor interaction lifts the

degeneracy of the kagome antiferromagnet to the nonplanar
cuboc1 state [42]. In theAB formalism, this phasemelts into
a stable chiralZ2 SL [familyA4ð1; 1Þof Table I] at small spin
[43]. This example of spontaneous generation of scalar
chirality is a strong motivation for taking chiral Ansätze into
account when solving the SBMFT problem with DMI.
Results.—We perform a numerical optimization of the

parameters jAj, jBj, ϕA, and ϕB, using the injection of the
measured parameters until convergence, combined with a
Brent algorithm to optimize the phases. The mean-field
energy is minimized with respect to jAj and ϕA, and
maximized with respect to jBj and ϕB. The Lagrange
multiplier λ is optimized each time a parameter is modified.
In SBMFT, the value of spin S is a continuous parameter,

given by the average number of bosons per site [see
Eq. (3)]. We optimize each Ansatz family in Table I, and
we select the one with the lowest energy for fixed S and θ.
So constructed phases either exhibit Néel order or are
gapped (chiral) Z2 spin liquids [26]. Our results are
summarized in Fig. 2 and discussed below. For complete-
ness, we also reproduce the phase diagram of Ref. [20] in
the A formalism, but here we include time-reversal break-
ing states as well [Fig. 2(b)].
Let us discuss four special cases: S → ∞, small S, θ ¼ 0,

and θ ¼ π=6.
(a) S → ∞: In the classical limit, we expect the mean-

field solution to exhibit magnetic order through Bose-
Einstein condensation of spinons. For θ ¼ 0, there is an
extensive degeneracy, but the only Néel states that are
reachable with our symmetric Ansätze are the regular ones,
constructed in [42]. Three of them belong to the ground
state manifold: q ¼ 0,

ffiffiffi
3

p
×

ffiffiffi
3

p
, and cuboc1. They are

obtained, respectively, from A1ð0; 0; 1Þ, A1ð0; 1; 1Þ, and
A4ð1; 1Þ of Table I. All three Ansätze approach the same
energy, and they show the classical values of the mean-field
parameters [36]. A nonzero DMI favors A1ð0; 0; 1Þ (i.e.,
q ¼ 0) consistent with a classical analysis.
(b) small S: In the A formalism and following

Tchernyshyov et al. [44], this limit can be solved
through an expansion in S. In the presence of a DM flux,

TABLE I. Description of the 20 Ansatz families respecting all
symmetries of kagome with DMI, up to time reversal. pR, pσ , p1,
pA, and pB (equal to 0 or 1) describe constraints on the link
parameters and their propagation to the entire lattice (Fig. 1).
“n.t.” means that the phase ϕ can take nontrivial values. The A1

family has two adjustable parameters jAj and jBj, whereas the
others have three parameters (ϕA or ϕB in addition).

pR pσ ϕA ϕB

A1ðp1; pA; pBÞ 0 0 pAπ pBπ
A2ðp1; pAÞ 0 1 pAπ n.t.
A3ðp1; pAÞ 1 0 pAπ n.t.
A4ðp1; pBÞ 1 1 n.t. pBπ

FIG. 2. Phase diagram. The Ansatz families with lowest self-
consistent mean-field energy are indicated. LRO (above the
dotted lines) means long-range order. The other phases are
gapped Z2 SLs.
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defined as the usual flux arg½Aijð−A�
jkÞ…Almð−A�

miÞ� plus
θij þ θjk þ � � � þ θmi, we find that the expansion of the
energy to order 8 agrees with the right panel of Fig. 2, up
to S≃ 0.15.
(c) θ ¼ 0 (pure Heisenberg case [45]): As shown

previously [43], we find A4ð1; 1Þ (i.e., cuboc1) in the
AB formalism and A1ð0; 1; 1Þ (i.e.,

ffiffiffi
3

p
×

ffiffiffi
3

p
) in the A

formalism as the lowest-energy phase.
(d) θ ¼ π=6: Classically, the q ¼ 0 Néel state with

well-chosen vector chirality minimizes the link energy
and is the unique ground state. The Hamiltonian Eq. (2)
is thus unfrustrated. It is equivalent to the XXZ model with
ferromagnetic XX coupling. In this model, quantum
Monte Carlo simulations found a superfluid phase [49].
As a consequence of the absence of frustration, jBj ¼ 0,
and the two formalisms are equivalent (similar to the square
lattice). A1ð0; 0; 1Þ is thus the lowest-energy state for any
value of spin (see Fig. 2).
Five of the 20 Ansatz families of Table I appear as

ground states of our model in the range of parameters of
Fig. 2. Two of them break T and were absent in T -
symmetric investigations [20]. In addition to the chiral
Ansatz A4ð1; 1Þ already discussed for θ ¼ 0 [43], a new
chiral phase is found here, both in theAB formalism and in
the A formalism: the A4ð0; 1Þ phase.
Since SBMFT contains unphysical boson number fluc-

tuations, some care must be taken in the interpretation of
these results [32]. However, we consistently obtain the new
phase in two formalisms (A and AB), where the fluctua-
tions are treated differently. This is an indication that the
phase is robust and that it can survive an enforcement of the
strict constraint Eq. (3).
The new chiral phase A4ð0; 1Þ is separated from adjacent

phases by first order phase transitions. Because of the
hysteresis phenomenon, its domain of metastability is
larger than shown in Fig. 2 [26]. It is notably metastable
for θ ¼ 0 up to S≃ 0.65 in the AB formalism, and up to
S≃ 0.3 in the A formalism. In its entire domain of
metastability, this phase has a closed curve of minimal-
energy spinons in the Brillouin zone (see Fig. 3). To our

knowledge, this intriguing property is unprecedented:
previously studied gapped phases have sharply localized
minima in the spinon spectrum [26].
Inelastic neutron scattering measures the dynamical

structure factor Sðq;ωÞ, i.e., the Fourier transformed
space-time spin-spin correlations. In SBMFT, Sðq;ωÞ is
nonzero when two spinons have the sum of their wave
vectors equal to q and of their energies equal to ω. In
previously studied SLs, the low-lying spin excitations
consist of combinations of a spinon at a singular spectral
minimum with one in the low-energy branch. This leads to
a high-intensity spot at the bottom of the excitation
continuum, located at the Bragg peak of the corresponding
classical phase, and to a strong dispersion away from this
spot [50]. In contrast, for the new phase proposed in this
Letter, any combination of two spinons on the minimum-
energy curve has the same energy equal to twice the spinon
gap. This leads to a spin excitation spectrum that is flat in
an extended region of the Brillouin zone (Fig. 4).
Inelastic neutron data on single-crystal herberts-

mithite revealed a surprising spreading of intensity over
a wide range of wave vectors at very low energy
(0.75 meV≃ 0.04J) [10]. The low-energy structure factor
of the A4ð0; 1Þ phase, Fig. 4, indeed shows analogies with
these results in the correct energy range, but with stronger
intensity variations. The two bottom panels of Fig. 4 can be
compared with Figs. 1(c) and 1(d) of [10], respectively.
An attempt to explain Han’s results by including vison

excitations in the A1ð0; 0; 1Þ phase was realized by Punk
et al. [25]. It was shown that this can indeed spread out
the signal. But the energy scale of A1ð0; 0; 1Þ was not
naturally consistent with the experiment (theoretical results
at ω ¼ 0.37J were compared to an experimental cut at
ω ¼ 0.044J). In the new A4ð0; 1Þ phase, the energy scales
are consistent, and we expect that adding vison excitations
can give a fairly convincing agreement with experiment.

FIG. 3. Typical spinon spectra in the A4ð0; 1Þ phase for small
DMI and small spin (here θ ¼ 0.01 and S ¼ 0.5;AB formalism).
The left panel shows the spinon energies along a cut; the right one
shows the lowest band in the full Brillouin zone (with the
characteristic ring of low-energy excitations).

FIG. 4. Top: dynamical structure factor Sðq;ωÞ of the A4ð0; 1Þ
phase (same parameters as in Fig. 3). The spin gap is 0.06J.
Bottom left: Sðq;ωÞ integrated up to ω ¼ 0.1J. Bottom right:
integrated over 0.06J < ω < 0.52J. See [26] for similar results
using different model parameters.
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Conclusion.—We have realized a SBMFT study of the
kagome antiferromagnet with DMI, including time-reversal
symmetry breaking Ansätze. One of the self-consistent
solutions has particularly interesting features: it is a small-
gap Z2 SL with a finite density of minimal-energy
excitations, stable in an extended region of the phase
diagram (Fig. 2). Its dynamical structure factor fairly well
reproduces the inelastic neutron scattering measurements
on herbertsmithite [10]: intensities around ω ¼ 0.04J are
obtained over a region of the Brillouin zone that is larger
than in previously proposed Z2 SLs (Fig. 4). Inclusion of
vison excitations [25] in the model will be a promising step
towards a faithful correspondence between theory and
experiment.
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