
Disorder-Free Localization

A. Smith,1,* J. Knolle,1 D. L. Kovrizhin,2,3 and R. Moessner4
1T.C.M. Group, Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom

2Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom
3NRC Kurchatov Institute, 1 Kurchatov Square, 123182 Moscow, Russia

4Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
(Received 21 February 2017; published 27 June 2017)

The venerable phenomena of Anderson localization, along with the much more recent many-body
localization, both depend crucially on the presence of disorder. The latter enters either in the form of
quenched disorder in the parameters of the Hamiltonian, or through a special choice of a disordered initial
state. Here, we present a model with localization arising in a very simple, completely translationally
invariant quantum model, with only local interactions between spins and fermions. By identifying an
extensive set of conserved quantities, we show that the system generates purely dynamically its own
disorder, which gives rise to localization of fermionic degrees of freedom. Our work gives an answer to a
decades old question whether quenched disorder is a necessary condition for localization. It also offers
new insights into the physics of many-body localization, lattice gauge theories, and quantum disentangled
liquids.
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The study of localization phenomena—pioneered in
Anderson’s seminal work on the absence of diffusion in
certain random lattices [1]—is receiving redoubled atten-
tion in the context of the physics of interacting systems
showing many-body localization [2–4]. While in these
systems the presence of quenched disorder plays a central
role, suggestions for interaction-induced localization in
disorder-free systems appeared early in the context of solid
helium [5]. However, all of these are limited to settings
having inhomogeneous initial states [6,7]. Whether
quenched disorder is a general precondition for localization
has remained an open question. Here, we provide an
explicit example to demonstrate that a disorder-free system
can generate its own randomness dynamically, which leads
to localization in one of its subsystems. Our model is
exactly soluble, thanks to an extensive number of con-
served quantities, which we identify, allowing access to the
physics of the long-time limit. The model can be extended
while preserving its solubility, in particular towards inves-
tigations of disorder-free localization in higher dimensions.
Localization phenomena are often diagnosed, in experi-

ment and simulation, via the dynamical response to a global
quantum quench. The underlying idea is to examine if a
system thermalizes, thereby losing memory of the initial
state, or whether this memory persists in the long-time limit
[6–9]. Some of the simple initial states used in these
diagnostics exhibit density modulations, e.g., in the form of
a periodic density-wave pattern, or a density imbalance,
with two halves of the system separated by a “domain
wall.” The latter setup was exploited in the experimental
identification of the many-body localization (MBL) tran-
sition [10]. In this experiment a complete domain-wall

melting was observed in the ergodic phase, while the
density imbalance remained in the localized phase at long
times, showing exponential tails set by the localization
length [11]. Another useful localization diagnostic, which
does not require inhomogeneous initial states, is based on
examining deviations from linearity in the light-cone
spreading of correlations after a quantum quench [12,13].
In translationally invariant systems, initial state inhomo-

geneity has been a precondition for the emergence of
localization. For instance, in models containing a mixture
of interacting heavy and light particles [6,7], the heavy
particles play a role of quasistatic disorder for the light
particles. However, these models show only transient
subdiffusive behavior, which ultimately gives way to
ergodicity at long times [6,14]. They were dubbed quasi-
MBL. Related attempts concern localization in translation-
ally invariant quantum versions of classical glassy models
[15], whose behavior, so far, cannot be differentiated from
quasi-MBL, due to limitations on system sizes available
in numerical simulations. Our work may also provide a
new perspective on quantum disentangled liquids [16–18],
which are characterized by the lack of equilibration in one
or more of the components of the liquid. Beyond this, only
the construction of single-particle hopping problems with
entirely flat dispersions, so that the group velocities of any
wave packet vanish, has succeeded in stopping particles
from moving [19,20].
The model, which we present here, exhibits localization

of purely dynamical origin. This localization is induced
by a quantum quench, and we use the above-mentioned
standard diagnostics to examine its nature. We stress that
our model is entirely disorder free, namely, both the
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Hamiltonian, and—crucially—initial states do not require
any quenched disorder. On the technical side we can
analyze the nature of dynamically generated randomness,
thanks to an extensive set of conserved quantities. We show
that time evolution after a quantum quench is described by
a dual Hamiltonian with binary disorder. This allows us to
develop an efficient numerical algorithm to access system
sizes far beyond the localization length, allowing us to
conclude that the phenomenology detailed below is repre-
sentative of the thermodynamic limit.
The Letter is structured in the following way. First, we

introduce the model and define the quench protocols we
consider. Second, we identify the conserved charges and
how they are associated with the dynamically generated
randomness. Third, we present our results for the fermionic
and the spin subsystems of our model. For the fermionic
subsystem we can extract a length scale, which we compare
with the relevant single-particle localization length. Finally,
we close with a discussion where we make connections
to related models and progress currently being made in the
field. An outline of the numerical methods we use is
referred to the Supplemental Material [21].
Model.—We study a 1D lattice model of spinless

fermions f̂i that are coupled via spins 1=2, σ̂i;iþ1, posi-
tioned on the bonds. The model is described by the
Hamiltonian (Fig. 1)

Ĥ ¼ −J
X

hiji
σ̂zi;jf̂

†
i f̂j − h

X

i

σ̂xi−1;iσ̂
x
i;iþ1: ð1Þ

Here, J and h denote the fermion tunneling strength and
Ising coupling, respectively. In the following we discuss
dynamics induced by the Hamiltonian (1) on initial states
with all bond spins aligned with the z axis, and the fermions
prepared in a Slater determinant. We consider three distinct
examples of the latter: (i) domain wall j1…111000…0i;
(ii) density wave j…10101…i, and (iii) the translationally
invariant ground state of the Hamiltonian (1) at h ¼ 0.
Dynamically generated randomness.—The model pos-

sesses an extensive set of conserved quantities fqjg
identified through the duality mapping, known from the
Ising model [25,26]. This holds for arbitrary initial
fermion states. In the subspace fixed by a particular set
of fqjg ¼ �1 the Hamiltonian (1) assumes a simple
noninteracting form

Ĥfqjg ¼ −J
X

hiji
ĉ†i ĉj þ 2h

X

j

qjðĉ†j ĉj − 1=2Þ; ð2Þ

a tight-binding model with a binary potential given by
the charge sector fqjg. Note that, despite the simplicity of
Eq. (2), the dynamics of the physical system is highly
nontrivial, not least on account of the nonlinear trans-
formation between degrees of freedom of the physical
Hamiltonian (1) and dual Hamiltonian (2).

The identification of the set of conserved quantities fqjg
and the derivation of Eq. (2) proceed by a duality mapping
[25,26] from bond spins σ to site spins τ,

τ̂zj ¼ σ̂xj−1;jσ̂
x
j;jþ1; σ̂zj;jþ1 ¼ τ̂xj τ̂

x
jþ1: ð3Þ

We consider a system of N sites with open boundary
conditions, see Fig. 1. Periodic boundary conditions
introduce only a few technical differences, such as the
global constraint on spins, which is automatically satisfied
by our choice of initial spin states (for more details see, e.g.,
Refs. [12,27]). In terms of the dual spins, the Hamiltonian
assumes the following form:

Ĥ ¼ −J
X

hiji
τ̂xi τ̂

x
j f̂

†
i f̂j − h

X

i

τ̂zi : ð4Þ

Here, N mutually commuting conserved charges are given
by q̂j ≡ τ̂zjð−1Þn̂j with n̂j ¼ f̂†j f̂j. The charges also com-

mute with the Hamiltonian Ĥ, but change sign under the

action of operators τ̂xj , and f̂ð†Þj . In terms of new fermion

operators ĉj ¼ τ̂xj f̂j, which commute with the charges, one
arrives at the Hamiltonian (2).
We restrict initial states at t ¼ 0 to tensor products of

fermion and spin states j0i ¼ jSi ⊗ jψi. The z-polarized
initial state of bond spins jSi ¼ j↑↑↑ � � �iσ implies a sum
over all 2N charge configurations fqig ¼ �1,

j0i ¼ 1

2N=2

X

fqig¼�1

jq1; q2;…; qNi ⊗ jψi; ð5Þ

which leads to correlators averaged over a binary potential.
This particular initial spin state ensures that the tensor
product of spin and fermion states jSi ⊗ jψif translates
into a tensor product of charge configurations and fermion
states jQi ⊗ jψic after the transformation from Eq. (1) to
Eq. (2), which would not generally be the case. However,
we find that this is not crucial for the observed phenom-
enology, see the Supplemental Material [21] for more
details. Note that states akin to Eq. (5) were suggested
in Ref. [28] for quantum simulations of disordered systems.

FIG. 1. Schematic picture of the model. The signs of nearest-
neighbor hopping for spinless fermions (blue circles) are deter-
mined by the z components of the σ spins (black arrows) living
on the bonds. Dual τ spins (red arrows, see the Supplemental
Material [21]) are shown in the configuration corresponding to
the σ spins.
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In our model this state appears naturally from a transla-
tionally invariant initial state.
Results.—The identification of the conserved charges,

and the form of the dual Hamiltonian (2), allow us to
evaluate correlators, which we will use to demonstrate
disorder-free dynamical localization. The results presented
below were obtained for systems with up to N ¼ 200 sites,
see the Supplemental Material [21].
Fermionic subsystem.—First, we consider the fermionic

subsystem, see Fig. 2. For a density-wave initial state

ΔρðtÞ ¼ 1

N

X

j

jh0jn̂jðtÞ − n̂jþ1ðtÞj0ij ð6Þ

measures the average staggered fermion density. In an
ergodic phase, ΔρðtÞ vanishes at long times. In our model,
it instead shows saturation to a finite asymptotic value
Δρð∞Þ, Fig. 2(a), which grows monotonically with h=J
(inset). This demonstrates the persistence of memory of the
initial state.
Similarly, for the domain-wall initial state [10,11], with a

maximal density imbalance between two halves of the
lattice, Fig. 2(b), an initial spreading of fermions eventually
halts, and the number of particles emitted from the filled to
the empty half of the system after the quench, Nhalf , (inset)
remains finite. The long-time spatial density distribution
shows exponential tails. The decay length is simply
proportional to the single-particle localization length
[29], as in Ref. [11], see Fig. 3, with a proportionality
constant of approximately 2.
Next, we diagnose localization via connected density-

density correlators h0jn̂jðtÞn̂kðtÞj0ic. In the absence of
dynamical disorder, h ¼ 0, we observe the light-cone
spreading of a free-fermion model [12], whose envelop
is set by the velocity corresponding to the Lieb-Robinson

bound vLR ¼ 4J, twice the maximum fermion group
velocity. This is in contrast with quenches for h ≠ 0
[Fig. 2(c)]. For a density-wave initial state at short times,
the linear spreading of correlators, bounded by vLR, and
accompanied by a second signal at vLR=2, is eventually
suppressed at long times. In this limit the correlators
assume a stationary form [13], decaying with the same
exponent as the density imbalance, Fig. 3. We emphasise
that we find a similar localization behavior for a transla-
tionally invariant Fermi-sea initial state, some results for
which are shown in the Supplemental Material [21].
This above ensemble of results provides unambiguous

evidence of localization of the fermionic subsystem in a
model without quenched disorder. This is our first central
result.
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FIG. 2. Time evolution of the fermion subsystem. (a) ΔρðtÞ, after a quench from a density wave initial state, for a range of values h=J,
with the dashed lines showing a long-time limit. Inset: long time limit of Δρ as a function of h=J. (b) Fermion density for a domain-wall
initial state at h=J ¼ 0.3. Inset: integrated fermion number in the right half of the chain as a function of time. (c) Absolute value of the
connected density-density correlator h0jn̂lðtÞn̂lþjðtÞj0ic for a density-wave initial state at h=J ¼ 0.2. The dashed lines correspond to two
light-cone velocities. The upper panels in (b) and (c) show the long-time limit Jt ¼ 109. All figures are computed for systems with
N ¼ 200 sites.
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FIG. 3. The localization length. Length scales determined from
the tails ∼ expð−j=λÞ in the long-time limit of the density
imbalance (λdw, circles), the density-density correlators (λdd,
triangles), and the single-particle localization length (λsp) [29].
The error bars are given by 2.5 standard deviations of the
numerical exponential fit. For h=J ¼ 0.2, 0.3 we used
N ¼ 400, with N ¼ 200 for all others.
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Spin subsystem.—Let us now turn to the discussion of
results for the spin subsystem. The expectation value of the
z component of the bond spin, Fig. 4(a), decays to zero at
long times for all h ≠ 0. Furthermore, for the explored
range of parameters h=J, we find that this decay is
asymptotically a power law. The remarkable qualitative
agreement between the exact result for N ¼ 20 and the
disorder averaged result for N ¼ 200 suggests that the spin
dynamics is dominated by regions of finite size, presum-
ably of the order of the fermion localization length.
Intriguingly, we find persistent spin fluctuations accom-
panying the power-law decay.
The equal-time spin correlator on two bonds, Fig. 4(b),

exhibits an initial linear light cone. As with the fermion
correlators, the extent of the ballistic regime is determined
by the localization length. As for the spin average, we find a
decay of all spatial correlations to zero in the long-time
limit, indicating equilibration of the spin subsystem.
Discussion.—We have observed dynamical localization

after a completely translationally invariant quantum
quench. The fermionic subsystem retains memory of the
initial state, whereas the spin subsystem eventually equil-
ibrates. In our model of fermions coupled to dynamical
spins, the requisite randomness is generated dynamically.
The main technical advance of our work is the identifica-
tion of an extensive set of conserved Z2 charges such that
the time evolution can be described by a noninteracting
Hamiltonian with effective binary disorder, allowing
numerical computations on large systems.
Despite the close relation of our model to the heavy-light

mixtures studied in the context of quasi-MBL [6,7], we
identify several key differences. First, the only limit where
true nonergodicity is known in these models is an infinite
mass “heavy” species, whereas the corresponding limit
for us (h → 0) amounts to free fermions. Otherwise the
dynamics of the heavy species generally leads to the
eventual return of ergodicity [6,14], whereas we observe
complete localization for all h ≠ 0. We can also vary the
parameter h=J freely; thus, there is no meaningful dis-
tinction in our model in terms of heavy or light particles:
the two subsystems are instead characterized by equilibra-
tion or lack thereof. This is similar to the distinction
between the components of quantum disentangled liquids
[16–18]. Interestingly, the model of Eq. (2) is also related to
the Falikov-Kimbell model of Ref. [30], which shows a rich
phase diagram at finite temperature.
The tunability of h=J may be important for experimental

realizations, as varying h=J can change the localization
length, e.g., in the range 0.2–1 from 100 down to almost a
single lattice spacing. This could enable quantum simu-
lations even on the currently available relatively small
systems [31].
Moreover, our setup itself is remarkably simple: the

Hamiltonian contains just nearest-neighbor exchange and
hopping terms, while the initial state can be chosen as a
simple, entirely unentangled product state of spins and

fermions, thereby removing obstacles related to preparing
complex many-body states. This should enable our pro-
posal to take maximal advantage from recent progress in
quantum simulations of lattice gauge theories [32].
Indeed, there are numerous connections to gauge

theories appearing in other contexts. Our model can be
thought of as a fermionic matter field minimally coupled
to a dynamical gauge field with a somewhat unusual
Hamiltonian. It is less constrained, but related to Z2-
slave-spin representations of the Hubbard model, and of
lattice gauge theories [33–35]. Crucially, our model allows
for straightforward generalizations, in particular to higher
dimensions, yielding, e.g., Kitaev’s toric code model
coupled to fermionic matter. This holds the promise of
studying, in a broad range of settings, the novel localization
phenomena uncovered in this work.
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