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Using first-principles GW Bethe-Salpeter equation calculations and the k · p theory, we unambiguously
show that for two-dimensional (2D) semiconductors, there exists a robust linear scaling law between the
quasiparticle band gap (Eg) and the exciton binding energy (Eb), namely, Eb ≈ Eg=4, regardless of their
lattice configuration, bonding characteristic, as well as the topological property. Such a parameter-free
universality is never observed in their three-dimensional counterparts. By deriving a simple expression for
the 2D polarizability merely with respect to Eg, and adopting the screened hydrogen model for Eb, the
linear scaling law can be deduced analytically. This work provides an opportunity to better understand the
fantastic consequence of the 2D nature for materials, and thus offers valuable guidance for their property
modulation and performance control.
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Parameter-free universal phenomena are amazing while
rare in the material science, which are usually associated
with profound physics behind, e.g., the topology for
quantized conductance [1,2], the fine structure constant
for opacity [3], and the self-organized criticality for 1=f
noise [4]. Ever since the discovery of graphene, more and
more two-dimensional (2D) materials have been fabricated,
and they exhibit a lot of novel properties that are distinctly
different from those of their three-dimensional (3D) coun-
terparts, potentially acting as the host for the parameter-free
universality. An example is the recently reported linear
scaling law [5] between the band gap (Eg) and the exciton
binding energy (Eb). However, a nonzero intercept up to
0.4 eV was revealed there which significantly shook the
validity of the finding because it means an Eb of 0.4 eV for
a gapless system. A following study [6] thus claimed that
such a linear scaling law only holds for 2D materials with
large Eg and breaks down when Eg < 2 eV.
For semiconductors, Eg and Eb are two fundamental

parameters critical to their applications in electronics,
optics, and energy harvest. Generally, these two quantities
are considered as a function of the carrier effective mass
(m�) and dielectric constant (ε). Because of the large
screening effect in the 3D semiconductors, it appears that
the m� is more crucial for the material properties, and the
universal linear relation between m� and Eg is experimen-
tally established [7], regardless of the ε. By contrast, the
role of ε becomes dominant in the 2D cases, which itself
solely determines the Eb, independent of the m� over a
wide range of polarizabilities [8]. Then a key to answer

whether the linear scaling law holds for 2D materials lies in
the relationship between Eg and ε. Moreover, the interplay
between m� and ε is of special interest for the under-
standing of the essential difference between 2D and 3D
nature.
In this work, we first identify the linear scaling law

between Eg and Eb by conducting a series of first-principles
GW Bethe-Salpeter equation (BSE) calculations on a
variety of 2D semiconductors, paying particular attention
to those with the Eg almost uniformly distributed in the
range 0–8 eV.We find a robust linear relation between them
with an intercept of exact zero, thus resolving the afore-
mentioned disagreement between Refs. [5,6]. Based on the
k · p approach, we then establish a universal expression of
Eg solely in terms of 2D polarizability, and therefore
analytically obtain the linear relation between Eb and
Eg. Finally, we show that the m� exhibits neither the linear
nor any clear relation with Eg or Eb in the 2D situation,
revealing a substantial difference from the 3D materials.
Our calculations are carried out in the framework of

DFT-GW-BSE [9,10] scheme by VASP package [11] with
the projector-augmented wave method (PAW) and the
Perdew-Burke-Ernzerhof (PBE) [12] exchange correlation
functional. A vacuum of 25 Å is used to minimize the
interlayer coupling. The geometric structures are fully
relaxed until forces on atoms are less than 0.005 eV=Å,
and the k-point meshes and cutoff energy for plane wave
basis are tested until the energy change is less than
0.001 eV. In the GW step, a single-shot G0W0 approach
is implemented to obtain the band gaps; the number of
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empty bands and the cutoff energy for response function
are tested to ensure that the gaps are converged with an
accuracy of 0.01 eV. The details of parameters used in the
GW-BSE calculations can be found in Table S1 of the
Supplemental Material [13], given their critical role in
reaching convergence in GW and BSE calculations [14].
We perform the calculations on 23 2D semiconductors,

whose Eb is plotted as a function of the corresponding
quasiparticle Eg in Fig. 1. Remarkably, these two distinct
physical quantities, which were seldom thought to be
relevant in the 3D materials, exhibit a robust linear scaling
law in a wide range of Eg (varying between 0 and 8 eV).
Through the numerical fitting, we obtain a slope of 0.27
and an intercept of zero that is consistent with the conven-
tional knowledge on exciton formation. It is worth empha-
sizing that these 23 materials cover almost all kinds of
popular 2D monolayer semiconductors including transition
metal dichalcogenides (TMDs), graphene derivatives,
III–V compounds, black phosphorus, transition metal
carbides, and nitrides (MXenes)[15] and even topological
materials [16–18]. They are essentially distinct in various
attributes, ranging from the lattice configuration to the
bonding characteristic and to the gap origin. Note that the

linear law is not only applicable for the ground state of
materials but also valid under external field (such as strain,
either a compression or a tension type), as demonstrated by
an example of the fluorinated graphene. More importantly,
this finding is experimentally supported. In Fig. 1, we also
incorporate the experimental results [19–22] reported so
far. It can be seen that all of them are well located around
the fitted line. Therefore, such an exotic linear scaling law
is likely universal for all the 2Dmonolayer semiconductors,
neither dependent upon any material parameter nor the
fundamental constants.
It is worth noting that an earlier work [5] also demon-

strated the existence of a linear law between Eb and Eg.
However, the nonzero intercept seems physically unrea-
sonable [6]. In the study presented here, by examining more
diverse systems, especially those with a small gap, we
achieve a zero intercept, which is no longer in conflict with
the fundamental knowledge of exciton. By careful com-
parison, we find the data presented in Ref. [5] are actually
fully compatible with ours, and the observed discrepancy is
just due to the lack of enough data therein.
There are rare universal phenomena in condensed matter

physics andmaterials science that do not depend onmaterial
parameters. A well-known example in the new era of 2D
materials is the opacity of graphene and other Dirac
materials [3], which is defined only by the fine structure
constant and does not depend on material parameters or
external conditions. The revealed linear relation betweenEb
and Eg here, which is not only independent of parameters of
material, but even independent of any fundamental con-
stants, adds a new example to the universal phenomena.
We now turn to the origin of this universal linear behavior.

Considering the complicacy of GW-BSE method, it seems
impossible to straightforwardly obtain a relation betweenEg

and Eb. With an alternative strategy, we seek answer in
simplified analytical models, i.e., the conventional k · p
perturbation theory and hydrogenlike model which are
frequently used to describe Eg and Eb in semiconductors.
The key to understand the observed linear law lies in the

dielectric constant ε [5,6]. For a hydrogen atom without
dielectric screening (ε ¼ 1), the characteristic size (Bohr
radius) is about 0.53 Å. Nevertheless, previous studies
[19,23–25] indicated that the magnitude of a 2D exciton
radius is typically at the level of several angstroms or even
larger. This reveals that the screening effect still plays a role
in 2D materials even if they have ultrathin thickness.
Different from that in 3D cases, the dielectric environment
in 2D semiconductors is highly inhomogeneous because
the charge polarization is confined solely in the material
plane [26]. As a consequence, only the in-plane electric
field distribution in material is affected [27], leading to the
strong in-plane screening while no screening exists in
vacuum (outside the plane).
In principle, the 2D static dielectric function takes the

form of εðqÞ ¼ 1þ 2πα2Djqj, where α2D is the 2D

FIG. 1. Linear relationship between Eg and Eb. Calculations
cover almost all the popular 2D monolayer semiconductors
including TMDs [monolayer MoS2, MoSe2, WS2, SnS2, and
TiS3], graphene derivatives [graphane (CH), chlorinated gra-
phene (CCl), fluorinated graphene (CF), and fluorinated gra-
phene under external field with 10% pressure (CF − 10%) or 10%
tension (CFþ 10%)], IV/III–V compounds [SiC, GaN, AlN, and
BN in the honeycomb lattice], black phosphorus, functionalized
MXenes [15] [Ti2CO2, Zr2CO2, and Sc2CF2] and topological
materials Sn [16], SnF [16], PbTe [17], single-quintuple layer
Bi2Se3, and GaBiCl2 [18]. The exciton is determined by the
lowest peak in absorption spectrum with the only exception of
SnS2 where the first dark exciton is used. The “minimum direct
band gap” is used for the indirect gap materials.
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polarizability that can be calculated from first principles
[28]. A handy definition of α2D is given as

α2D ¼ L
ε3D − 1

4π
; ð1Þ

where L and ε3D are, respectively, the supercell thickness
and macroscopic dielectric constant. In the random-
phase approximation (RPA) approach, the microscopic
frequency-dependent dielectric function is given as [28]

εGG0 ðq;ωÞ ¼ δGG0 þ 2
4πe2

V
1

jqþGj
1

jqþG0j
X

k

X

c;v

hv;kje−iðqþGÞ·rjc;kþ qihv;kje−iðqþG0Þ·rjc;kþ qi�

×

�
1

Ec;kþq − Ev;k − ωþ i0þ
þ 1

Ec;kþq − Ev;k þ ωþ i0þ

�
; ð2Þ

where c and v refer to empty and occupied bands,
respectively. Without the local field effect, ε3D can be
calculated by taking the macroscopic and static limit of
Eq. (2),

ε3D ¼ lim
q→0

ε00ðq;ω¼ 0Þ

¼ 1þ lim
q→0

16πe2

V
1

jqj2 ×
X

k

X

c;v

jhv;kje−iq·rjc;kþ qij2

×
1

Ec;kþq −Ev;k
; ð3Þ

where V is the volume of the 3D supercell. The correction
caused by nonzero ω is small (see more details in the
Supplemental Material Fig. S1 [13]), not affecting the
conclusion of the paper.
In the Bloch theory, the eigenfunctions are written as

periodically modulated plane waves, leading to

hv;kje−iq·rjc;kþqi
¼ huv;keik·rje−iq·rjuc;kþqeiðkþqÞ·ri ¼ huv;kjuc;kþqi: ð4Þ

And in the q → 0 limit, by means of Taylor series over q,
we have

huv;kjuc;kþqi ¼ q · huv;kj∇kjuc;ki: ð5Þ
So α2D is finally expressed as (a 1=2 factor is introduced
given the tensor nature of α2D)

α2D ¼ 2e2

S

X

k

X

c;v

jhuc;kj∇kjuv;kij2
Ec;k − Ev;k

; ð6Þ

where S is the surface area of the 2D supercell, and k is
summed over the 2D reciprocal plane. Equation (6) can also
be rewritten in an integral form,

α2D ¼ 2e2

ð2πÞ2
X

c;v

Z

k

jhuc;kj∇kjuv;kij2
Ec;k − Ev;k

d2k: ð7Þ

Borrowing the results from Ref. [29],

jhuc;kj∇kjuu;kij2¼
1

ðEv;k−Ec;kÞ2
����huc;kj

∂Hk

∂k juv;ki
����
2

; ð8Þ

we have

jhuc;kj∇kjuv;kij2 ¼
ℏ2

2μ

1

ðEg þ ℏ2k2
2μ Þ

; ð9Þ

under the k · p perturbation theory and an effective mass
approximation, when considering only the contributions
from the highest valence band and lowest conduction band.
It is noted that the deduction does not depend on any
specific Hamiltonian, and the details can be found in the
Supplemental Material [13]. Here, μ is the reduced mass
which is assumed to be independent of k. Substituting
Eq. (9) into Eq. (7), we get

α2D ¼ e2

2π

�
−

1

Eg þ x

�����
xM¼ℏ2K2

M
2μ

0

; ð10Þ

where KM denotes the maximal k at the boundary of the
first Brillouin zone. Usually xM is much larger than Eg

(herein the typical value of xM is around several tens of eV).
This implies that we may take the upper limit in Eq. (10) to
be infinite, which leads to a compact formula for α2D,

α2D ¼ e2

2πEg
: ð11Þ

Equation (11) only accounts for the contribution from states
near one gap. If there are more than one equivalent gaps,
e.g., for MoS2 or Sn, there are two gaps located atK andK0,
respectively, the results should be multiplied by the number
of band gaps (Ng), i.e.,

α2D ¼ Nge2

2πEg
: ð12Þ

For Sn system, which has a direct gap as small as 0.1 eV
with Ng ¼ 2, Eq. (12) predicts α2D ¼ 46 Å, close to the
numerical GW calculation of 56 Å. If the contribution from
an extra larger gap of 0.3 eV at Γ is included, Eq. (12)
increases the value to 53 Å, nearly identical to the GW
result.
To relate α2D to Eb, we adopted the screened hydrogen

model by Olsen et al. [8] and obtained Eb as

Eb ¼
8μe4

ℏ2ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32πe2

3ℏ2 α2Dμ
q

Þ2
; ð13Þ
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where the nonlocal effect of the 2D dielectric constant in
the standard hydrogen model is described by averaging the
screening over the extension of the exciton. When α2D is
large enough, it can be further simplified into

Eb ¼
3e2

4πα2D
; ð14Þ

which is also independent of the reduced mass. Combining
Eq. (12) with (14), we immediately obtain a simple linear
relation between Eg and Eb,

Eb ¼
3

2Ng
Eg: ð15Þ

The value of Ng is essential for the linear slope between
Eb and Eg. For another small Eg system, SnF, the band gaps
are located along Γ − K, and Ng ¼ 6 due to the hexagonal
symmetry. Inserting the value of Ng into Eq. (15) gives a
simple expression of

Eb ¼
Eg

4
: ð16Þ

However, for general cases, the situation gets complicated
due to the two approximations adopted during the calcu-
lation of Eq. (11). Firstly, we employ the two-band model
which omits the contributions from the other bands, hence
usually yielding the underestimation of α2D (see more
details in the Supplemental Material [13]). For systems
with small Eg, such as Sn and SnF, the screening is indeed
contributed dominantly from the band edge bands, while
for systems with moderate or large gaps, the contributions
from other bands are nonignorable (see Fig. S2). Secondly,
the μ is assumed to be independent of k, which neglects the
complicated band dispersion. For example, a gapped Dirac
Hamiltonian (where the μ implicitly depends on k) gives a
result slightly different from Eq. (11) (see the Supplemental
Material [13]). Taking the upper limit in Eq. (10) to be
infinite also introduces discrepancy (see the Supplemental
Material [13]). Therefore, the observed simple linear
relations of Eb vs Eg and α2D vs 1=Eg are consequence
of various factors. Actually, our numericalGW-BSE results
suggest that the influence can be equivalently represented
by Ng ¼ 6 in the simplified analysis. To further clarify this
point, we present Eg and Eb [from the GW-BSE calcu-
lations and theoretical Eq. (12) with Ng ¼ 6 and Eq. (14)]
as a function of α2D in Fig. 2. It can be seen that the
theoretical predictions are in excellent agreement with
GW-BSE calculations when Eg is smaller than 4 eV.
However, both Eg and Eb deviate from the predictions
under large gaps, although their deviations cancel out and
the linear relation between Eg and Eb is well kept in the
whole energy range considered (as shown in Fig. 1). The
origin of the mysterious cancellation andNg ¼ 6 is not well
understood at this stage, which awaits for further research.
Physically, the larger the energy gap is, the weaker

the screening becomes. Weaker screening naturally

corresponds to a smaller exciton radius and hence the
higher binding energy as schematically illustrated in Fig. 3.
In this sense, a proportional relationship between Eg and Eb

is taken for granted. Nevertheless, what is much more
interesting here is the universal parameter-free slope as well
as the formulas of Eg and Eb as functions of α2D, which is
clearly not valid for the 3D semiconductors. Such a
difference essentially arises from the nonlocal vs local
screening effect between the 2D and 3D materials. For the
2D case, the electron-hole interaction is long-ranged and
thus notably affects the exciton radius. In contrast, for the
3D case, the strong screening weakens the electron-hole
interaction rapidly, generally leading to a larger exciton
radius, and hence a smaller Eb.
Figure 2 also shows an increasing deviation of Eq. (14)

from the GW-BSE calculating results as the α2D becomes
smaller than 2 angstroms. Let us briefly discuss their
origins. For the determination of Eb, the averaging scheme
[8] is used to handle the nonlocal screening. Intrinsically,
the validity of such a treatment lies in the fact that the
exciton extends over a wide range under small Eg.
However, the exciton will be compressed within a small
space with the enlargement of Eg as schematically dem-
onstrated in Fig. 3. Averaging then becomes no longer valid
for a local quantity, thus causing the deviation. In this
sense, the observed linear relationship between Eb and Eg

in the whole range (see Fig. 1) is surprising. The underlying
mechanism under small Eg is understood in terms of α2D,
but it keeps unclear under large Eg.
Finally, we investigate the relationship between the

carrier effective mass m� and Eg in the 2D materials. It
is worth emphasizing that a scalar m� usually cannot be
defined in the 2D case because of emerging anisotropy and
degeneracy at the band edges. Among 23 2D materials
considered, the electron effective mass (m�

e) is only well-
defined in 14 materials, and the corresponding first-
principles results are given in Fig. 4(a). While in the
calculation of the reduced mass μ, the presence of

FIG. 2. Comparison of the results between analytical model and
first principles calculations. Eg (left) and Eb (right) as a function
of α2D. The brown lines are from analytical model of Eqs. (12)
and (14) while the scattered points are from the GW-BSE
calculations. They agree rather well when Eg < 4 eV.
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anisotropy and degeneracy at the valence band maximum
as well as the indirect gap character further decreases the
number of suitable materials to five (Sn, PbTe, MoS2, WS2,
and MoSe2). In this regard, we pick out the materials with
well-defined m�

e and, respectively, calculate the μ with
respect to heavy and light holes when the valence band
maximum is degenerate. Figure 4(b) summarizes the
results, where the filled and half filled symbols, respec-
tively, correspond to the values from heavy and light holes.
Obviously, no clear correlation is observed between effec-
tive mass (m�

e or μ) and Eg. This is remarkably distinct from
the 3D materials in which a linear relation exists between
Eg and m�

e [7], manifesting an essential difference of 2D
and 3D materials.
In conclusion, we confirm the parameter-free linear

scaling law between Eg and Eb in the whole band
gap range for 2D materials by using first-principles GW

Bethe-Salpeter equation calculations and the k · p method.
We deduce a universal expression for the quasiparticle band
gap of 2D materials which is solely dependent upon the
static 2D polarizability but has nothing to do with the
effective mass. It is expected that there exists more
generalized Eg expression suitable for all the 2D semi-
conductors, and here obtained linear scaling law may
provide an alternative way to realize the Eg expression
from the knowledge of Eb, or vice versa. We also find that
the effective mass does not play an essential role in the
universal behavior of 2D materials, unlike the case in their
3D counterparts. Our study offers not only a new perspec-
tive to distinguish the 3D and 2D nature but also some
insights for the band gap engineering in the optimal design
of functionalized 2D materials.
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