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We investigated the effect of out-of-plane crumpling on the mechanical response of graphene
membranes. In our experiments, stress was applied to graphene membranes using pressurized gas while
the strain state was monitored through two complementary techniques: interferometric profilometry and
Raman spectroscopy. By comparing the data obtained through these two techniques, we determined the
geometric hidden area which quantifies the crumpling strength. While the devices with hidden area ∼0%
obeyed linear mechanics with biaxial stiffness 428� 10 N=m, specimens with hidden area in the range
0.5%–1.0% were found to obey an anomalous nonlinear Hooke’s law with an exponent ∼0.1.
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A thin membrane is always crumpled due to its low
bending rigidity and resulting inability to sustain compres-
sive forces. Such crumpling has been actively investigated
during the last three decades to describe the behaviors of
wrinkled skin [1,2], biological lipid membranes [3,4], and
solar sails [5]. The advent of graphene and other 2Dmaterials
allowed for testing the models of crumpling in crystalline
membranes at the ultimate atomic thickness limit [6]. In
graphene specifically, crumpling originates from static wrin-
kling [7–9] and out-of-plane (flexural) phonons [10–12] and
persists in both supported and freestanding samples [13].
Recent theoretical work showed that every mechanical
property of graphene is renormalized due to crumpling
[14–20]. In particular, crumpling causes the reduction of
the stiffness [21,22], increased bending rigidity [11,23],
variable (and negative) Poisson’s ratio [24,25], and negative
thermal expansion [26,27]. At the same time, the contribu-
tion due to crumpling is almost universally ignored in the
experiments probingmechanics of these materials. This may
lead to misinterpretation or incorrect conclusions, for exam-
ple, while using graphene nanoelectromechanical devices to
detect mass, force, or displacement. Experiments that do
probe the interplay between crumpling and graphene
mechanics remain highly challenging [21,23,28].
Previously, we developed an approach to probe the

mechanical response of crumpled graphene membranes
[29]. We observed the reduction of graphene stiffness down
to ∼20 N=m and hypothesized that it was mostly due to
static wrinkling. Unfortunately, the electrostatic actuation
scheme used in that work prevented us from applying
sufficient stress to change the crumpling strength. Because
of that, while the hints of nonlinear behavior in stress-strain
curves were observed, we could not investigate it in detail.
The goal of this Letter was to study the transition of

graphene membranes from the crumpled state characterized
by reduced stiffness to the flat state with accepted stiffness

close to 400 N=m (Young’s modulus ∼1 TPa). To apply
mechanical stress sufficient to drive this transition, some
membranes were pressurized with compressed gas while
otherswere prestressed during fabrication.To characterize the
transition, we quantified the degree of crumpling by compar-
ing the measurements of strain via Raman spectroscopy and
wide-field interferometry. These experimental innovations
allowed the observation of a nonlinear Hooke’s law in
samples with different amounts of crumpling. Our findings
were confirmed by the comparison with quantitative theory.
Experimental setup.—Two types of samples were pro-

duced: standard and strain engineered. Both sample types
were prepared by the wet transfer of graphene grown
via chemical vapor deposition with subsequent thermal
annealing as described in a previous work [29]. Standard
samples consisted of a monolayer graphene membrane
suspended over a single hole with diameter ∼10 μm in a
siliconnitride (SiNx) support on a siliconchip [Fig. 1(a), left].
To create strain-engineered samples, we patterned an addi-
tional ∼50–100 nm–deep, 5-μm-wide recess in the SiNx
around the edges of the hole [Fig. 1(a), right]. Graphenewas
pulled into the recess by van derWaals forces during transfer.
From geometrical considerations, this process is expected to
impart ≤1% strain on graphene. Strain-engineered samples
allow us to extend the range of applicable stress and act as an
experimental control for flat graphene subjected to perfectly
in-plane and uniform built-in stress.
The mechanical response of graphene membranes was

characterized through measurements of sample deflection
under a known pressure (P). Pressure was applied to
graphene using compressed nitrogen gas [30] as shown
in Fig. 1(b) and the Supplemental Material (SM) [31].
From pressure, we determined the radial stress [33] of
graphene σ ¼ Pa2=4h, where h is the center point dis-
placement determined from interferometry described below
and a ∼ 5 μm is the radius of the device. We note that σ is
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the total stress that includes both the built-in (existing
without the application of pressure) and applied (due to
applied pressure) stress components. Consequently, σ ¼ 0
means the membrane is completely relaxed.
Upon application of pressure, the mechanical strain ε of

the graphene membrane was measured in two different yet
complementary approaches: interferometric profilometry
ðεIntÞ and Raman spectroscopy ðεRamÞ. The strain ε deter-
mined by both measurement types is applied strain. By
definition, ε ¼ 0 at zero applied pressure. In the first method,
the deflection of graphene is probed via wide-field phase
shift interferometry using a 530-nm, <0.1mW power
illumination. This allowed the direct determination of lateral

membrane topography on themicron scale [Fig. 1(c)] and the
measurement of the center point deflection (h) with nano-
meter resolution. Fromgeometrical considerations, the radial
strain [33] was then determined as εInt ¼ 2h2=3a2. Because
εInt is measured geometrically relative to the initial state at
P ¼ 0, it does not include the built-in strain (ε0) component.
In our second method, the strain was determined by

monitoring the shifts of the 2D and G peaks in the Raman
spectra of graphene taken at the center of the membrane.
Inaccuracy of spot position by up to 2 μm changes the
results no more than 4%, see SM Fig. 2 [31]. We use a
focused 633-nm excitation source with an estimated spot
size <1 μm, resolution ∼1 cm−1 and power <1 mW to

(a) (b)

(c) (d)

FIG. 1. Experimental setup. (a) Top row:
Cartoon views of standard and strain-
engineered devices. Bottom row: scanning
electron microscopy images of represen-
tative samples (scale bar is 5 μm).
(b) Device schematic showing the appli-
cation of pressure and our two measure-
ment techniques, interferometry and
Raman spectroscopy. Depending on the
orientation of the sample chip we can
apply positive (away from the sample,
as pictured) or negative (towards the
sample) pressures. (c) Membrane profiles
for both positive and negative pressures as
measured by wide-field interferometry.
(d) Raman spectra of graphene showing
theG and 2D Raman peaks throughout the
range of applied pressure.

(a) (b)

FIG. 2. Stress-strain curves from interferometry and Raman spectroscopy. (a) Stress-strain as determined from Raman spectroscopy,
εRamðσÞ, for three standard samples A, B, and C (blue points) along with a strain engineered device (orange points). The data for the
strain-engineered device is offset for clarity. Left inset: The progression of Raman 2D peak shift vs εInt used to calibrate peak sensitivity∂ω=∂ε (dashed black line). Right inset: The position of the 2D Raman peak plotted vs the position of the G Raman peak. The slope of
2.2 indicates that changes in peak positions are due to strain. (b) Stress-strain as determined from interferometry, εIntðσÞ, for the same
devices shown in (a). Dashed grey line shows slope expected for flat graphene with the stiffness ~E2D ¼ 400 N=m. Dashed colored lines
indicate the region of linear mechanical behavior.
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avoid heating [Fig. 1(d)]. The strain was extracted as
ε2D;GRam ¼ ð∂ω2D;G=∂ε2D;GRam Þ−1ðω2D;G − ω2D;G

0 Þ [34]. Here
ω2D;G is the frequency position of the 2D(G) peak of
strained graphene and ω2D;G

0 is the position of the same
peak at zero applied pressure. In this way, εRam is also a
measurement of strain relative to the initial state [35]. The
peak sensitivity for each device was found by extracting the
slope of Raman peak positions vs εInt [Fig. 2(a), left inset,
dashed line] at stresses >1 N=m. We find peak sensitivities
j∂ω2D=∂εIntj ∼ 155–200 cm−1=% and j∂ωG=∂εIntj ∼ 55 −
90 cm−1=% consistent with recent values in literature
[34,36–38]. The necessity of applying such large stress
is discussed later. We ensured that changes in Raman peak
positions vs pressure were entirely due to strain rather than,
e.g., changes in doping by observing ∂ω2D=∂ωG ∼ 2.2
[Fig. 2(b), right inset] [39]. This also confirms identical
results for extraction of strain from either G or 2D peaks.
Comparison of stress-strain curves from interferometry

and Raman spectroscopy.—The stress-strain relationships of
three standard samples (A, B, and C) as measured
from Raman spectroscopy, εRamðσÞ, and interferometry,
εIntðσÞ, are shown in Figs. 2(a) and 2(b). We observe
dramatic differences between the εRamðσÞ and εIntðσÞ curves.
The εRamðσÞ curves are linear [Fig. 2(a)]. The average biaxial
modulus for all devices extracted from them is ~E2D ¼
dσ=dεRam ¼ 480� 10 N=m. In contrast, the εIntðσÞ curves
are strongly nonlinear [Fig. 2(b)]. In the region of low stress
(σ < 1 N=m), graphene is soft, ~E2D ∼ 30–150 N=m. At the
same time, in the high-stress region (σ > 1 N=m) we
retrieve an average value of ~E2D ¼ 450� 70 N=m, close
to what is measured by Raman spectroscopy. In the most
interesting intermediate region (σ ∼ 1 N=m), we see a
transition from nonlinear to linear mechanical response with
increasing stress. For the strain-engineered device [Figs. 2(a)
and 2(b), orange points], we observe a linear and identical
response from both Raman spectroscopy ( ~E2D ¼
430� 10 N=m) and interferometry ( ~E2D ¼ 426� 7 N=m)
throughout the range of applied stress.

We note that the biaxial moduli measured from Raman
spectroscopy or from interferometry at high stress are close
to the values obtained in other experiments [40–42], con-
sistent with the value for flat graphene, ~E2D ∼ 400 N=m
calculated from Lamé parameters [27] (λ ¼ 2 eVÅ−2 and
μ ¼ 10 eVÅ−2) and extracted from simulations [43]. The
biaxial modulus can be converted to an in-plane stiffness,
E2D ¼ ð1 − υÞ ~E2D, where υ ∼ 0.165 is the commonly used
value for the Poisson’s ratio of graphene [44]. This yields an
average of E2D ¼ 380� 30 N=m over all our devices. This
corresponds to a Young’s modulus of ∼1 TPa. However, the
Poisson’s ratio for graphene is not well known and may not
be constant or may even take negative values [24,25].
Therefore, we directly report the biaxial modulus ~E2D.
The data of Fig. 2 invite the following questions. Why

are the observed behavior and magnitudes of εRam and εInt
so different? What is the nature of the nonlinearity in εInt
and can we quantify it?
The relation between stress-strain curves and crum-

pling.—We believe the disparity between εRamðσÞ and
εIntðσÞ is a signature of crumpling and can be understood
by clarifying the definition of strain. The shifts of Raman
peaks, and hence εRamðσÞ derived from them, reflect length
changes of the carbon-carbon (C—C) bonds. Quantitatively,
εRam ¼ ðL − L0Þ=L0, where L0 and L are the lengths of the
membrane before and after the application of stress. The
“true” length of themembraneL is not affected by crumpling
provided C—C bond lengths are unchanged [45]. On the
other hand, interferometric profilometry senses the profile
of the membrane averaged with micrometer resolution,
εInt¼ðLAV−LAV

0 Þ=LAV
0 , whereLAV

0 andLAV are the lengths
of the averaged profiles. Thus defined LAV decreases when
the membrane is crumpled. The difference between L (red
lines) and LAV (dashed green lines) is illustrated in the
cartoon of Fig. 3(b) showing cross sections of circular
membranes under the application of stress. At zero applied
stress, crumpling causes a large difference between the
“true” length of the cross section, L0, and the length of its
averaged profile, LAV

0 . When the stress is large enough to

(a) (b)

(c)

FIG. 3. The relation between strain and crumpling. (a) The comparison of the strain measured via interferometry (εInt, green curve) and
the strain determined via Raman spectroscopy (εRam, red curve) vs applied stress σ for device A. Inset: εRam vs εInt for the same device
shown in the main panel (blue points) and strain-engineered device (orange points). Dashed black line has slope ∼1. (b) Cartoon
illustrating the evolution of crumpling in a membrane under gradually increasing stress. Cross section of the membrane and the same
cross section averaged with micron resolution are shown above each membrane. (c) Visualization of hidden area ΔA0 of a membrane.
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suppress crumpling (σ�), that differencevanishes and the true
profile is virtually indistinguishable from the averaged
profile, L∼LAV. Summarizing, εRam is the microscopic
strain, which is a relative change in the bond lengths or
the change in true membrane length, whereas εInt is macro-
scopic strain, which is a relative change in the length of the
averaged profile.
This insight allows the following interpretation of the data.

At small stress, the changes in LAV per unit stress are large
compared to those inL as the significant amount of “hidden”
length contained in crumpling is being unraveled [Fig. 3(b),
middle]. In the experimental data at σ < σ� ∼ 1 N=m, we
indeed observe much larger dεInt=dσ compared to dεRam=dσ
[Fig. 3(a)]. As the stress becomes larger, the amount of
crumpling is gradually decreased. Finally, the crumpling is
suppressed, the membrane is flat, and the difference between
the change in L and LAV disappears almost completely
[Fig. 3(b), right]. Correspondingly, in standard devices at
σ > σ� ∼ 1 N=m [Fig. 3(a)] or in strain-engineered devices
[Fig. 3(a), inset, orange points] we observe dεInt=dσ ∼
dεRam=dσ or, equivalently, dεRam=dεInt ∼ 1.
The near-constant difference Δε ¼ εIntðσÞ − εRamðσÞ

observed in the regime of high stress is related to what
is known as “hidden area” in geometry [22]. The hidden
area ΔA0 is the difference between the true area of the
membrane A0 and the AAV

0 area of its projection onto a
plane parallel to the membrane at zero applied stress [46].
As is evident from Fig. 3(c), ΔA0 is the amount of area
“hidden” in out-of-plane crumpling and is “revealed” when
the membrane is stretched. From simple geometrical
considerations, Δε≈ ðLAV

0 − L0Þ=L0 ≈ 1
2
ðAAV

0 − A0Þ=A0 ¼
1
2
ΔA0=A0. We use the relative hidden area ΔA0=A0

extracted from Δε to quantify the amount of crumpling
in our devices. We obtain relatively large ΔA0=A0 of 0.6%,
0.8%, and 1.0% for devices A, B, and C, respectively.
Exploring the nonlinear response.—Having obtained a

quantitative measure for crumpling strength, we further
investigate the nonlinear behavior of the macroscopic strain
(εInt) relevant for most experiments. Recently, a theory [47]
was developed to describe the “anomalous Hooke’s law” in
the stress-strain relationship of crumpled graphene,

εðσÞ ¼ σ�
~E2D

�
σ

σ�
þ 1

α

�
σ

σ�

�
α
�
: ð1Þ

Here, α is an exponent which determines the degree of
nonlinearity caused by crumpling and σ� is the “crossover
stress,” a measure of the stress required to flatten the
membrane. Qualitatively, the mechanical behavior described
by Eq. (1) is that of two springs in series. The first linear
“spring,”with stiffness ~E2D ∼ 400 N=m,describes the stretch-
ing of C—C bonds, while the second, nonlinear “spring”
corresponds to the uncrumpling of amembrane. The theory of
Ref. [47] predicts α ∼ 0.1 for static disorder (wrinkling) and
α ∼ 0.5 for thermal fluctuations (flexural phonons).
The comparison of our experimental data with the

predictions of Eq. (1) is greatly facilitated by our comple-
mentary measurements of εInt and εRam. By taking the
difference εIntðσÞ − εRamðσÞ, we isolate the contribution of
the nonlinear term in Eq. (1) pertaining to the mechanics of
crumpling. To account for built-in stress in our devices, we
subtract an additional term ε0 ¼ εðσ0Þ from Eq. (1), where
σ0 is built-in stress. This allows us to compare our data
(where only applied strain is measured) with Eq. (1). We
are then able to fit our experimental data for devices A, B,
and C to the nonlinear component in Eq. (1) with ~E2D
determined from interferometry at high stress with α, σ�,
and σ0 treated as free parameters.
Figure 4(a) illustrates the adherence of our data to the

nonlinear model. For all standard devices, we retrieve an
average exponent α ¼ 0.12� 0.02. This is close to α ¼ 0.1
expected for statically wrinkled graphene, confirming our
earlier interpretation that static wrinkling rather than
flexural phonons is the primary contributor to crumpling
[29]. The average value of built-in stress obtained from the
fit, σ0 ¼ 0.07� 0.01 N=m, is close to what is observed by
others [42,48]. The average crossover stress was found to
be σ� ¼ 0.8� 0.1 N=m. Physically, this means a stress of
at least 0.8 N=m was required to flatten the sample and
retrieve a linear response at higher stress. In agreement with
that, linear εðσÞ was observed for the strain-engineered
device where we estimate σ0 ¼ 0.84� 0.02 N=m (>σ�).
Possible reasons for deviations from the model include
nonuniform stress fields, nonrandom wrinkle distribution,
deviation of the geometry from perfectly circular, and
possible presence of contaminants [49,50].
The notion of the hidden area can be further used

to compare the data to the prediction of the model of
Ref. [47]. There, the degree of crumpling was controlled by
the “disorder parameter,” B ∝ ðσ� − σ0Þ= ~E2D. In Fig. 4(b),

(a) (b) FIG. 4. Nonlinear mechanics in crumpled
graphene. (a) The difference between the
strain extracted from interferometry and the
strain from Raman εInt − εRam vs stress σ
for standard samples A, B, and C (blue
points) and the strain-engineered device
(orange points). Solid lines are fits to the
nonlinear model described in the main text
(ε ∝ σα). (b) Disorder parameter B vs
hidden area ΔA0=A0.
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parameter B extracted from our fits vs ΔA0=A0 is plotted.
The correlation seen in Fig. 4(b) means that higher
crumpling measured experimentally does, in fact, corre-
spond to higher disorder in the model.
Conclusion.—In conclusion, we observed the crossover

from nonlinear mechanical response of graphene in the
regime of low applied stress described by an anomalous
Hooke’s law, to linear response at high stress. The degree
of nonlinearity and the crossover stress were found to
depend on the amount of crumpling. We determined the
latter, as quantified by the hidden area, through comple-
mentary Raman spectroscopy and interferometry measure-
ments. Furthermore, we have demonstrated the distinction
between experimentally measuring the microscopic or
macroscopic mechanical response of materials.
We would like to highlight a few possible applications

of our results. First, in many nanomechanics experiments,
the linear mechanical response of graphene and other 2D
materials is assumed in the regime of low stress (e.g.,
Refs. [51,52]). The conclusions of some of these works
may need to be reassessed. Second, our results suggest that
the mechanical constants of graphene can be engineered
in a wide range by tailoring the amount of crumpling
through strain engineering. Finally, the most exciting area
for future work is at the intersection between condensed-
matter and statistical physics, where it may be possible to
study renormalization of elastic constants of crystalline
membranes due to flexural phonons [53,54] and the
competition between crumpling sources [16].
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