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We consider wall-to-wall transport of a passive tracer by divergence-free velocity vector fieldsu. Given an
enstrophy budget hj∇uj2i ≤ Pe2 we construct steady two-dimensional flows that transport at rates NuðuÞ≳
Pe2=3=ðlog PeÞ4=3 in the large enstrophy limit. Combinedwith the known upper boundNuðuÞ≲ Pe2=3 for any
such enstrophy-constrained flow, we conclude that maximally transporting flows satisfy Nu ∼ Pe2=3 up to
possible logarithmic corrections. Combined with known transport bounds in the context of Rayleigh-Bénard
convection, this establishes that while suitable flows approaching the “ultimate” heat transport scaling
Nu ∼ Ra1=2 exist, they are not always realizable as buoyancy-driven flows.The result is obtainedby exploiting
a connection between the wall-to-wall optimal transport problem and a closely related class of singularly
perturbed variational problems arising in the study of energy-driven pattern formation in materials science.
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Introduction.—Modeling, measuring, and controlling the
transport properties of incompressible flows is a fundamental
aspect of fluid mechanics, with a myriad of applications in
engineering and the applied sciences. In some cases the
transport of heat or trace concentrations of impurities is
passive; i.e., the thermal energy or mass markers are carried
without essentially altering the flow. In other settings the
transport is active, as is the situation when heat or dissolved
mass alters the fluid density to produce buoyancy forces in
the presence of a gravitational field, or more generally for
momentum transport responsible for the transmission of drag
forces. In thisLetter,we study the primaryproblemof passive
tracer transport between parallel walls by a combination of
molecular diffusion and fluid advection, when the tracer
concentration is set at the walls to determine the maximum
transport increase over diffusion alone that incompressible
flows of a given intensity can induce. The results are of
interest in their own right, but they also have implications for
the active transport problem of buoyancy-driven turbulent
convection.
The mathematical formulation is as follows. The spatial

domain Ω is periodic in x and y with rigid walls at z ¼ 0
and z ¼ 1. The tracer field Tðx; y; z; tÞ, referred to as
temperature, satisfies the advection-diffusion equation

∂tT þ u ·∇T ¼ ΔT ð1Þ
in Ω with boundary conditions Tjz¼0 ¼ 1 and Tjz¼1 ¼ 0,
where u ¼ îuþ ĵvþ k̂w is an arbitrary divergence-free
velocity field with no-slip boundary conditions uj∂Ω ¼ 0.
These are dimensionless variables: lengths are measured in
units of h, time in units of h2=κ, and u in units of κ=h,
where h is the wall-to-wall distance and κ is the thermal
diffusivity. T is measured in units of the temperature drop
across the layer.

The Nusselt number Nu is a measure of enhancement of
wall-to-wall transport relative to pure conduction: it is the
ratio of total convective to conductive vertical heat flux
given here by

NuðuÞ ¼ 1þ hwTi; ð2Þ
where h·i indicates the long-time and space average. We are
concerned with the design of incompressible flows that,
subject to an intensity budget hj∇ × uj2i ¼ hj∇uj2i ≤ Pe2,
maximize wall-to-wall heat transport,

FðPeÞ ¼ max
hj∇uj2i≤Pe2

NuðuÞ: ð3Þ

The nondimensional Péclet number Pe is a measure of
advective intensity relative to that of diffusion and we take
it to be the (maximum allowable) root-mean-square rate of
strain, equivalent here to the square root of the mean
enstrophy. We are particularly interested in the behavior of
the maximal transport FðPeÞ as Pe → ∞.
Our motivation is twofold. First, while the wall-to-wall

optimal transport problem is both easy to state and natural
from a practical point of view—the power required to
sustain such a Newtonian fluid flow is proportional to its
mean-square rate of strain—it turns out to be quite
challenging to identify the salient properties of optimal
flows in the large enstrophy limit. In the energy-constrained
problem where the budget is set by the kinetic energy, the
optimal transport scaling is captured by a simple convec-
tion roll design [1]. The enstrophy-constrained problem
considered here is substantially more subtle: numerical
work [1,2] suggests that optimal flows are not simple
convection rolls, but instead more complex designs featur-
ing near-wall recirculation zones whose fine-scale features
are yet to be described.
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Second, thewall-to-wall optimal transport problem can be
used to derive absolute limits on the rate of heat transport in
Rayleigh-Bénard convection (RBC), the buoyancy-driven
flowof fluid heated frombelowand cooled fromabove [3]. In
the Boussinesq approximation, RBC is modeled by supple-
menting Eq. (1) with the forced Navier-Stokes equations

∂tuþ u · ∇uþ∇p ¼ PrΔuþ Pr Rak̂T ð4Þ
for the divergence-free velocity field uðx; y; z; tÞ, where Pr
and Ra are the Prandtl and Rayleigh numbers. It is a long-
standing question to determine rigorous Nu-Pr-Ra relation-
ships for RBC. The best-known rigorous result that applies
uniformly in Pr for no-slip boundaries is Nu≲ Ra1=2 for
Ra ≫ 1 [4–7], i.e., the so-called “ultimate” heat transport
scaling [8].
Dotting u into Eq. (4), integrating by parts, and time

averaging reveals that hj∇uj2i ¼ Ra × ðNu − 1Þ. Thus, by
the definition (3) of wall-to-wall optimal transport,

Nu ≤ F(Ra × ðNu − 1Þ):
This optimal wall-to-wall approach for proving absolute

limits on the rate of heat transport by RBC flows was
proposed as a potentially more powerful alternative to the
established methods [1]. Here the advection-diffusion equa-
tion (1) is imposed as a pointwise constraint, whereas
previous analyses utilized only certain mean or moment
balances derived from the governing equations. Therefore,
the wall-to-wall optimal transport approach has the propen-
sity to produce better bounds on Nu as a function of Ra.
Moreover, it produces explicit incompressible flow fields
realizing optimal transport, which are of interest in their
own right.
The aforementioned methods for deriving upper bounds

in RBC applied here prove that FðPeÞ ≲ Pe2=3 for Pe ≫ 1
(see, e.g., [2]). In this Letter we explore the sharpness of
this a priori estimate insofar as its scaling is concerned. Our
methods shed light on the nature of maximally transporting
flows and make precise what is gained in the context of
rigorous bounds in RBC by enforcing Eq. (1) pointwise. To
this end we construct steady no-slip incompressible flows
fuPeg such that

hj∇uPej2i ≤ Pe2 and NuðuPeÞ≳ Pe2=3

ðlog PeÞ4=3 ð5Þ

for all Pe ≫ 1 to conclude that incompressible flows can
indeed achieve Nu ∼ Pe2=3 up to possible logarithmic
corrections. To obtain the result, we exploit an interesting
and perhaps unexpected connection between the wall-to-
wall optimal transport problem and optimal design prob-
lems arising for energy-driven pattern formation in
materials science [9].
The rest of this Letter is organized as follows. First, we

derive a variational formulation for the transport rate of an
arbitrary steady incompressible flow. Then, we introduce a
Lagrange multiplier for the enstrophy constraint to discover

a direct analog of Howard’s variational problem for RBC
[4] in the context of wall-to-wall optimal transport. The
resulting problem is reminiscent of questions in materials
science, inspiring construction of the nearly optimal flows.
We end with further discussion of connections between
fluid dynamical and materials science variational problems.
Variational formulation for transport rates.—We begin

by deriving variational formulations for the rate of heat
transport, inspired by variational formulations for the
effective diffusivity in periodic homogenization [10].
(See also [11,12].) The methods laid out there for periodic
domains can be adapted to our domain as well. We may
restrict attention to steady velocity fields: indeed, the
maximal unsteady transport rate is no less than its steady
counterpart.
The steady temperature deviation θ ¼ T þ z − 1 satisfies

u · ∇θ ¼ Δθ þ w ð6Þ

with boundary conditions θj∂Ω ¼ 0. Then, NuðuÞ − 1 ¼
hj∇θj2i ¼ hwθi and we can state dual variational formu-
lations for it,

NuðuÞ − 1

¼ min
η∶ηj∂Ω¼0

hj∇ηj2i þ hj∇Δ−1ð−wþ u ·∇ηÞj2i ð7Þ

¼ max
ξ∶ξj∂Ω¼0

2hwξi − hj∇Δ−1u ·∇ξj2i − hj∇ξj2i; ð8Þ

where Δ−1 is the inverse Laplacian operator with vanishing
Dirichlet boundary conditions on ∂Ω.
To see these formulations, consider the pair of equations

�u ·∇θ� ¼ Δθ� þ w:

Then, ξ ¼ 1
2
ðθþ þ θ−Þ and η ¼ 1

2
ðθþ − θ−Þ satisfy

u ·∇η ¼ Δξþ w; ð9Þ

u ·∇ξ ¼ Δη ð10Þ

and either variable can be eliminated to produce

u ·∇Δ−1u ·∇η ¼ Δηþ u ·∇Δ−1w; ð11Þ

u ·∇Δ−1u · ∇ξ ¼ Δξþ w: ð12Þ

These are the Euler-Lagrange equations for the well-posed
problems (7) and (8), so it remains only to verify that the
optimal η and ξ appearing there achieve the desired value
of NuðuÞ − 1.
First, consider the optimal η. Testing Eq. (10) against ξ and

integrating by parts shows that ∇ξ⊥∇η in L2ðΩÞ. Hence,
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NuðuÞ − 1 ¼ hj∇θþj2i ¼ hj∇ξj2i þ hj∇ηj2i;

and because ξ is recovered from η through Eq. (9), this
verifies Eq. (7).
Next consider the optimal ξ. A similar integration by

parts argument involving Eqs. (9) and (12) shows that w⊥η
in L2ðΩÞ and that

hwξi ¼ hj∇Δ−1u ·∇ξj2i þ hj∇ξj2i: ð13Þ
Therefore,

NuðuÞ − 1 ¼ hwθþi ¼ hwξi;
and combining this with Eq. (13) gives Eq. (8).
The change of variables ðθþ; θ−Þ ↔ ðη; ξÞ is key to these

formulations. It was also used in the case of energy-
constrained wall-to-wall optimal transport [1], where it
was observed that η depends only on z, permitting asymptotic
solution of the Euler-Lagrange equations. Such simplifica-
tion does not occur in the enstrophy-constrained case but we
can still exploit Eq. (8) to deduce rigorous lower bounds.
Nearly optimal velocity fields.—We introduce a Lagrange

multiplier for the enstrophy constraint and consider

MðλÞ ¼ max
u

fNuðuÞ − λ2hj∇uj2ig
for λ ≪ 1. Then, Eq. (8) and straightforward rescalings imply

MðλÞ − 1 ¼ max
a

f2a − a2 min
hwξi¼1

Eλ=aðu; ξÞg;

where

Eϵðu; ξÞ ¼ hj∇Δ−1u ·∇ξj2i þ ϵhj∇uj2 þ j∇ξj2i: ð14Þ
This form of the problem, minEϵ, bears an interesting

resemblance both to Howard’s variational problem for RBC
bounds [4] and also to problems originally arising in the
study of energy-driven pattern formation in materials
science (more on this later). For now we assert that

ϵ1=2 ≲ min
hwξi¼1

Eϵðu; ξÞ≲ ϵ1=2 log
1

ϵ

for ϵ ≪ 1. The lower bound is the direct translation of the
known upper bound FðPeÞ ≲ Pe2=3 to this minimization
problem in the case of steady velocities. Our focus is on the
upper bound: next, we construct test fields ðuϵ; ξϵÞ satisfy-
ing the net flux constraint hwϵξϵi ¼ 1 such that

hj∇uϵj2i∼ ϵ−1=2 log
1

ϵ
and Eϵðuϵ;ξϵÞ≲ϵ1=2 log

1

ϵ
ð15Þ

for ϵ ≪ 1. After performing the construction we will undo
the rescalings to recover the main result (5).
The branching construction.—A judiciously chosen

stream function ψðx; zÞ describes a two-dimensional

(2D) divergence-free velocity field u ¼ ð−∂zψ ; 0; ∂xψÞ
that is well aligned wall-to-wall and whose direction
fluctuates at a length scale lðzÞ depending monotonically
on the distance to the wall. Choose n points fzkgnk¼1

satisfying 1
2
< z1 < z2 < � � � < zn < 1 and let lk ¼ lðzkÞ

be the length scale at the kth cross section with
ψðx; zkÞ ¼ ψkðxÞ ¼ c0

ffiffiffi
2

p
lk cosð2πl−1k xÞ. (The lks will be

compatible with 2π periodicity and the constant c0 will
be chosen below.) For 1 ≤ k ≤ n − 1, extend the stream
function across the kth transition layerΩk ¼ Tx × ½zk; zkþ1�
(T x is the periodic x interval) by

ψðx; zÞ ¼ f

�
z − zk

zkþ1 − zk

�
ψkðxÞ þ f

�
zkþ1 − z
zkþ1 − zk

�
ψkþ1ðxÞ;

where f ∈ C∞ð½0; 1�Þ is a fixed cutoff function. We require
the Pythagorean condition

½fðtÞ�2 þ ½fð1 − tÞ�2 ¼ 1

and also that fð0Þ ¼ 1, fð1Þ ¼ 0, and f0ð0Þ ¼ f0ð1Þ ¼ 0.
We let ψðx; zÞ ¼ ψ1ðxÞ in the bulk domain Ωbulk ¼
Tx × ½1

2
; z1�, ψðx; zÞ ¼ f(ðz − znÞ=ð1 − znÞ)ψnðxÞ in the

thermal boundary layer Ωbl ¼ T x × ½zn; 1�, and extend it
by even reflection across z ¼ 1=2 to all of Ω; see Fig. 1.
Next, we choose the test field ξ. The wall-to-wall

velocity component w and ξ must be well correlated to
enforce the net flux constraint hwξi ¼ 1, so we fix ξ ¼ w.
Then, by the L2 orthonormality of fc−10 ψ 0

kg,

FIG. 1. Schematic streamlines of the nearly optimal flow.
Streamlines branch and self-similarly refine from bulk to boun-
dary layer; this terminates once the design resembles isotropic
convection rolls. The inset shows the structure at the wall.
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1

2c20
hw2i ¼

�Z
z1

1=2
þ
Xn−1
k¼1

Z
zkþ1

zk

þ
Z

1

zn

�
jjc−10 ∂xψ jj2L2

x
dz

¼ zn −
1

2
þ ð1 − znÞ

Z
1

0

f2 ¼ 1

2
zn:

Choosing c0 ¼ z−1=2n satisfies the flux constraint.
We proceed to bound the terms appearing inEϵ in Eq. (14).

Let δk ¼ jzkþ1 − zkj be the thickness of the kth transition
layer Ωk, let δbl ¼ j1 − znj be the thickness of the thermal
boundary layer Ωbl, and let δbulk ¼ jz1 − 1

2
j be the thickness

of the bulk domain Ωbulk. Recall that lk ¼ lðzkÞ is the
horizontal length scale at the kth cross sectionT x × fzkg, and
let lbulk ¼ l1 and lbl ¼ ln be the horizontal length scales
appearing in Ωbulk and Ωbl, respectively. Similarly, define
zbulk ¼ z1 and zbl ¼ zn.We thenhave the following estimates
for the advection and enstrophy terms:

hj∇Δ−1u ·∇wj2i ≲
Z

zbl

zbulk

ðl0Þ2dzþ lbl; ð16Þ

hj∇uj2i ∼ 1

l2bulk
þ
Z

zbl

zbulk

1

l2
dzþ 1

lbl
: ð17Þ

Note for these to hold we must restrict δbulk ∼ 1, lk ≲ δk, and
lbl ∼ δbl, and finally lkþ1 ∼ lk and jlkþ1 − lkj ∼ lk for all k.
Under these restrictions we conclude that

Eϵ ≲ ϵ
1

l2bulk
þ
Z

zbl

zbulk

�
ðl0Þ2 þ ϵ

1

l2

�
dzþ lbl þ ϵ

1

lbl
;

with a constant that only depends on those implicit in the
restrictions.
Consider minimizing the right-hand side above over all

lðzÞ. The optimal l satisfies l0 ¼ ϵ1=2l−1 on ðzbulk; zblÞ. It
is natural to think of solving this equation on ð1

2
; 1Þ, with

the initial condition lð1Þ ¼ 0 leading immediately to the
power law

lðzÞ ∼ ϵ1=4ð1 − zÞ1=2:
Choosing lbulk ∼ ϵ1=4 and lbl ∼ ϵ1=2 we are led by Eqs. (16)
and (17) to the estimates Eϵ ≲ ϵ1=2 logð1=ϵÞ and hj∇uϵj2i ∼
ϵ−1=2 logð1=ϵÞ for ϵ ≪ 1.
Now we prove Eq. (15). Take lðzÞ ¼ 2−nð1 − zÞ1=2 and

fix the interpolation points zk ¼ 1 − 2−2k so that δk ¼
3
4
×2−2k and lk ¼ 2−k−n. Given ϵ > 0, let n satisfy

1
4
log2ð1=ϵÞ ≤ n < 1

4
log2ð1=ϵÞ þ 1 and note that ϵ ∼ 2−4n.

Since δbulk ∼ 1, δk ∼ 2−2k and lk ∼ 2−k−n, and lk ¼ 2lkþ1, we
see that the requirements for Eqs. (16) and (17) hold.
Therefore, the arguments above prove the validity
of Eq. (15).
Rescalings and the Lagrange multiplier.—We can now

deduce our main result (5). Let ðuϵ; ξϵÞ be as in Eq. (15).
Let ϵ ¼ λ=a where a λ > 0 are to be chosen, and perform

the rescalings ~u ¼ a1=2λ−1=2uλ=a and ~ξ ¼ a1=2λ1=2ξλ=a.
Then, according to Eq. (15),

c1
a3=2

λ3=2
log

a
λ
≤ hj∇ ~uj2i ≤ c2

a3=2

λ3=2
log

a
λ

and

Nuð ~uÞ ≥ 2a − ca3=2λ1=2 log
a
λ
þ λ2hj∇ ~uj2i;

where c1, c2, and c are independent of all parameters.
We maximize in a. The optimal a satisfies a transcen-

dental equation, so to capture the asymptotics we set
a ¼ θ1λ

−1 log−2 λ, where θ1 depends only on c1 and c.
Then, for λ ≪ 1, ~u satisfies

hj∇ ~uj2i ≤ 2c2
θ3=21

λ3log2λ
and Nuð ~uÞ≳ 1

λlog2λ
:

Finally, we can prove Eq. (5). We do so by choosing the
Lagrange multiplier to satisfy λ ¼ θ2Pe−2=3ðlog PeÞ−2=3,
where θ2 depends only on c1, c2, and c. Then, Eq. (5)
follows from the rescalings performed above.
Observe that ϵ ∼ Pe−4=3ðlog PeÞ2=3. Thus, in terms of the

original parameters, our nearly optimal velocity fields
fuPeg exhibit horizontal fluctuations at a length scale

lðzÞ ∼ Pe−1=3ðlog PeÞ1=6ð1 − zÞ1=2
for z ∈ ðzbulk; zblÞ. In the bulk the horizontal length scale
obeys lbulk ∼ Pe−1=3ðlog PeÞ1=6, while in the thermal boun-
dary layer lbl ∼ Pe−2=3ðlog PeÞ1=3.
Discussion.—The ultimate result of this Letter is that there

exist incompressible flows satisfying suitable boundary
conditions and intensity constraints that transport heat by
Eq. (1) and saturate, modulo logarithmic corrections, the
upper boundNu≲ Ra1=2 that holds for anyRBC flow. It does
not, however, establish the existence of solutions to the full
Boussinesq system (1) and (4) that realize such transport. The
actual behavior of large-Rayleigh-number RBC transport
remains an open question mathematically. We note here,
however, the recent result obtained in [13] for RBC transport
between stress-free boundaries in 2D that states that
Nu≲ Ra5=12 uniformly in Pr. Combining this bound with
the results of this Letter, and the fact that the optimal transport
between stress-free boundaries is no smaller than between
no-slip boundaries [2], we conclude that buoyancy forces
cannot achieve—or even approach—the actual optimalwall-
to-wall transport in 2D stress-free RBC.
Mathematical analysis of upper bounds on the rate of

heat transport in RBC goes back at least to Howard [4]
who, employing suitable mean or moment balance laws,
introduced the variational problem

mðλÞ ¼ min
hwξi¼1

hjwξ − 1j2i þ λhj∇uj2i · hj∇ξj2i; ð18Þ

where f̄ stands for the average in the periodic variables x
and y. Here we introduce the related problem
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~mðϵÞ ¼ min
hwξi¼1

hjwξ − 1j2i þ ϵhj∇uj2 þ j∇ξj2i ð19Þ

and note that mðλÞ ∼ λ1=3 for λ ≪ 1, while ~mðϵÞ ∼ ϵ1=2 for
ϵ ≪ 1. The former was obtained by Howard and Busse in
their groundbreaking works [4,5]. The lower bounds
implicit in both of these scalings are equivalent to the
upper bound Nu≲ Ra1=2.
Our interest in Eqs. (18) and (19) is in their relation to

wall-to-wall optimal transport. We showed above that the
steady wall-to-wall problem is equivalent to the minimi-
zation of Eϵðu; ξÞ under a net flux constraint hwξi ¼ 1 [see
Eq. (14) and the surrounding discussion]. Now, we decom-
pose the advection term in Eϵ as

hj∇Δ−1divuξj2i ¼ hjwξ − 1j2i þQðuξÞ;
where Q is the positive semidefinite quadratic form

QðmÞ ¼ min
w∶divw¼0

hjw þm −m · k̂ k̂ j2i:

Evidently this new term Q, not present in Eqs. (18) and
(19), arises from the advection-diffusion constraint (1).
As shown in this Letter, the wall-to-wall optimal trans-

port approach cannot result in a significantly improved
upper bound on heat transport in turbulent RBC; i.e.,
improvement cannot come in the form Nu≲ Raα with
α < 1

2
. Still, the quadratic formQ does play a nontrivial role

in our construction of nearly optimal flows: it is precisely
this form that supplies the term

R
zbl
zbulk

ðl0Þ2dz in the advec-
tion estimate (16). So, at the level of constructions, Q is
what gives rise to the logarithmic correction in Eq. (5). It
remains to be seen if it actually modifies the behavior of the
optimal transport function FðPeÞ.
The branching flow structure described in this Letter is

similar to Busse’s “multi α” technique [5] for the analysis
of Howard’s problem. Busse observed that Eq. (18) cannot
be solved as λ → 0 by flows featuring only one horizontal
mode. Instead, increasingly more horizontal modes emerge
as λ → 0 with wave numbers fαkgnk¼1 depending on the
distance to the wall. The resulting picture is similar to that
presented here, albeit with significantly different vertical
and horizontal length scales fδkgnk¼1 and flkgnk¼1.
However, Busse’s work was not how we came upon the

idea for this sort of flow in wall-to-wall optimal transport.
Instead, we observed that the functional Eϵ in Eq. (14)
shares striking similarities with various functionals arising
in the study of energy-driven pattern formation in materials
science [9] where emergent multiple-scale structures are
commonly referred to as “branching.” Three examples
come to mind: domain branching in uniaxial ferromag-
netics [14,15], branching of twins near an austenite–
twinned-martensite interface [16,17], and self-similar blis-
tering patterns in a biaxially compressed thin elastic film
[18–20]. The morphology of low-energy states in these

examples results from the competition between a non-
convex lowest-order term (e.g., in micromagnetics, the
anisotropy and magnetostatic energies) and a higher-order
convex regularization (e.g., the exchange energy).
Branching efficiently matches boundary conditions to
low-energy states in the bulk. Continuing with the analogy
of micromagnetics, Privorotskiı̆s construction is to our
branching flow construction what the Landau-Lifshitz
structure is to single-mode convection rolls. Regarding
elastic blistering, we see a parallel between the advection
term in Eq. (14) and the membrane energy in the Föppl–von
Kármán model; likewise, the enstrophy term from Eq. (14)
is to be compared with the bending energy there. Such
analogies are useful routes for the transfer of mathematical
methods and theoretical techniques, and we imagine that
other such connections are waiting to be found.
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