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We report on the experimental investigation of individual Cs atoms impinging on a dilute cloud of ultracold
Rb atoms with variable density. We study the relaxation of the initial nonthermal state and detect the effect of
single collisions which has so far eluded observation. We show that, after few collisions, the measured spatial
distribution of the tracer atoms is correctly described by a Langevin equation with a velocity-dependent
friction coefficient, over a large range of Knudsen numbers. Our results extend the simple and effective
Langevin treatment to the realm of light particles in dilute gases. The experimental technique developed opens
up the microscopic exploration of a novel regime of diffusion at the level of individual collisions.
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Diffusion is an omnipresent transport phenomenon in
nature. The motion of a tagged particle in a fluid is
determined by its mass m and by the density of the fluid
via the Knudsen number Kn [1]. For large densities
ðKn ≪ 1Þ, the interparticle collision frequency is high
and the fluid may be treated as a continuum medium.
On the other hand, for low densities ðKn ≫ 1Þ, individual
collisions matter and the discrete nature of the fluid is
apparent. The only closed equation applicable to all values
of Kn is the Boltzmann equation for the phase-space
distribution of the particles [1,2]. Solutions of this non-
linear kinetic equation have been obtained in the extreme
situations of vanishing and infinite Knudsen numbers, and
in the Brownian limit of a heavy tracer particle, m=M ≫ 1,
where M is the mass of the fluid particles [1,2]. However,
despite its central importance for the foundations of
statistical physics and the study of, e.g., fluid flows in
the upper atmosphere and aerosols dynamics [2–4], much
less is known, both theoretically and experimentally, about
the long-standing problem of light particles diffusing in a
dilute gas at intermediate Kn [5].
An alternative and highly successful description of a

tagged particle is offered by the Langevin equation [6,7]. In
this stochastic approach, Newton’s equation of motion for
the particle is extended by friction and fluctuating forces
accounting for the interaction with the surrounding gas.
The Langevin equation enables simple evaluation of the
macroscopic properties of the diffusing particle, without
the need to compute complicated collision integrals as in
the Boltzmann equation. It is valid in the Brownian limit of
a heavy tracer particle, where the friction coefficient is
independent of the particle velocity [8]. Recent experimen-
tal studies of Brownian motion have been reported in
gases [9,10] and liquids [11,12], including studies of
nonequilibrium thermodynamics [13,14]. However, the

usual Langevin equation with constant friction does not
hold for light tracer particles in dilute gases [15,16].
Here, we experimentally observe the motion of individual

133Cs atoms impinging on a dilute cloud of ultracold 87Rb
atoms, as shown in Fig. 1. We exploit the variable density
of the cloud to automatically explore a wide range of
Knudsen numbers in each experimental run, from Kn ≃ 1 at
the center to arbitrarily large values at the edges, while
m=M ≃ 1.5. We initially accelerate the laser-cooled Cs
atoms to a nonthermal kinetic energy of about 43kT (T is the
temperature of the Rb cloud and k the Boltzmann constant).
We are able to investigate the nonequilibrium relaxation
induced by collisions with the cloud particles, from ballistic
to diffusive motion, detecting the effect of a single collision
on the dynamics of the tracer atom. Discrete hard-sphere
collision simulations reveal that only few collisions suffice
to thermalize a Cs atom to the cloud temperature. We
additionally demonstrate that the measured spatial distribu-
tion of tagged Cs atoms is well described, without any
free parameters, by a generalized Langevin equation with a
velocity-dependent friction coefficient [15,16]. To our
knowledge, this extension of the Langevin equation has
not been experimentally verified so far.
In our experiment, individual Cs tracer atoms are released

from a magneto-optical trap (MOT) at z ¼ −0.27 mm and
drawn toward the center of a crossed dipole trap containing
an ultracold thermal Rb cloud, where all atoms are in their
respective hyperfine ground state. The Rb cloud contains
typically 6 × 103 to 3.5 × 104 atoms at a temperature of
2 μK and with 1=e2 widths of σr ¼ 1.3 μm and σz ¼ 39 μm
in radial and axial directions [Figs. 1(a)–1(c)] [17]. After
entering the cloud, a Cs atom undergoes collisions with the
cold Rb atoms and thermalizes. Ultracold temperatures
in themicro-Kelvin range lead to slow dynamicswith thermal
velocities around 10 mms−1. While at room temperature,
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heavy tracer particles are bombarded at an extremely high rate
(of the order of 1016 Hz in air [18]), ultralow temperatures, a
small mass ratio of the order of unity, and low gas densities
reduce this collision rate tovalues between13 × 103 Hzat the
center and 0 at the edges of the gas cloud.Hence, the effective
mean free timebetween twocollisions is in the experimentally
accessible range of ≥ 0.1 ms. For the finite-size cloud, there
is a nonzero probability that a Cs atom does not collide at all
and moves unperturbed through the cloud [Fig. 1(f)].
In order to observe the spatial distribution of the tagged

Cs atoms, we freeze their positions after a given (interaction)
time t after release from the MOT by turning on a strong 1D
optical lattice in the z direction. We subsequently remove the
Rb cloud from the trap and record the atomic position with
fluorescence imaging [Fig. 1(b)] [19,20]. The spatial dis-
tribution for any fixed time is determined by accumulating
atomic positions over about 600 realizations. The time
evolution of the distribution, as it impinges on the Rb cloud,
is obtained by varying the interaction time t [Figs. 1(d)–1(f)].
We use on average ≈7 Cs atoms per experimental run.
Interspecies effects such as self-diffusion and self-thermal-
ization are therefore negligible. Moreover, the thermal de
Broglie wavelength is smaller than the interparticle distance

for the densities considered [21] and the dynamics of the
atoms can, hence, be described classically.
Figures 2(a)–2(c) show the measured Cs spatial distri-

butions for three increasing values of the peak Rb density
nmax after an interaction time t ¼ 25 ms. For low Rb
density [Fig. 2(a)], we observe a bimodal distribution with
a fraction of unperturbed Cs atoms (right) that has passed
through the Rb cloud (grey Gaussian curve) and a larger
fraction of diffused atoms that has thermalized inside the
cloud (left). The existence of the unperturbed fraction
reveals the discrete nature of the dilute Rb gas. When
the Rb density is increased [Figs. 2(b)–2(c)], the unper-
turbed fraction shrinks, as the collision probability grows
with nmax, and the diffused fraction does not fully penetrate
the cloud. With increasing density, diffusion slows down so
that Cs tracer atoms need more time to reach the center of
the cloud. Additionally, three-body losses become impor-
tant close to the center, where the density is highest, further
decreasing the number of Cs atoms. A measurement of the
three-body loss rate is presented in Ref. [21]. The lifetime
of a Cs atom at the peak of the spatial distribution in
Fig. 2(c) is τ ¼ 3 ms. Three-body losses are therefore
accounted for in all simulations.

(d)

(e)

(f)

(b) (c)(a)

(g)

FIG. 1. (a) Sketch of the experimental setup and tracer dynamics. (b) Series of fluorescence images for identical experimental conditions,
leading to a classical probability distribution of single Cs atoms. (c) Time-of-flight image of the dilute Rb cloud. (d)–(f) Measured spatial
tracer distribution for a central Rb density of n ¼ 2 × 1013 cm−3 for (d) t ¼ 17 ms, (e) t ¼ 21 ms, and (f) t ¼ 25 ms. The grey Gaussian
curve indicates the Rb cloud density; right vertical scale applies. The dashed vertical line at z ¼ 0.125 mm separates the diffused fraction
that has thermalized inside the cloud (left) from the unperturbed fraction that has passed through the cloud (right). (g) Cloud density profile
and corresponding Knudsen number variation for the highest central density of n ¼ 3.2 × 1013cm−3 considered.
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In order to quantitatively describe the measured spatial
distribution and the thermalization process, we first employ
discrete hard-sphere collision simulations [21]. We numeri-
cally solve Newton’s equation of motion for individual Cs
tracer atoms elastically colliding with the thermal gas of Rb
atoms in three dimensions. Spatial distributions as shown in
Fig. 2 were obtained by projecting the atomic positions onto
the z axis. A tagged Cs atom initially starts with an effective
Gaussian spatial distribution at z ¼ −0.27mm with width
σx ¼ σy ¼ 6.8 μm and σz ¼ 58 μm at time t ¼ 7 ms, and a
Maxwell-Boltzmann velocity distribution with temperature
1.4 μK. These parameters were extracted from an indepen-
dent time-resolved reference measurement in the absence of
the cloud. The properties of the Rb cloud were also obtained
by independent measurements, so that there are no free
parameters in the simulations. At each time stepdt, a collision
between a tracer atom and a Rb atom is described by a local
collision probability, Pcoll¼1−expð−ΓdtÞ, where Γ is the
collision rate. Fornonthermal test particleswithvelocityv, the
collision rate is given by Eq. (5.4,5) in Ref. [22],

ΓðvÞ ¼ n
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where σ is the scattering cross section, x2 ¼ Mv2=ð2kTÞ,
and ErfðxÞ the error function.We analogously describe three-
body losses by the probability Ploss¼1−expð−dt=τÞ, with

the local lifetime τ [21]. Since the density n changes spatially,
the expressions above are evaluated at the current position
of a tracer [30].
Results of discrete collision simulations are compared

to experimental tracer distributions in Figs. 2(a)–2(c) and
Ref. [21]. We obtain excellent agreement between measured
(blue) and simulated (red) spatial distributions, both for the
unperturbed (right) and the diffused fraction (left), with an
overlap, ðR NexpNsimdzÞ=ð

R

N2
expdz

R

N2
simdzÞ1=2, between

the two distributions of more than 90%. We attribute the
slight discrepancies to measurement uncertainties of the
independently determined parameters entering the simula-
tions [21]. Figure 3(a) depicts the relative number of atoms
in the unperturbed fraction (defined as those atoms with
position z > 0.125 mm, marked by the vertical dashed line),
for various values of the maximum Rb density nmax. The
simulations show that the unperturbed fraction is mostly
composed of tracer atoms that do not undergo any collision
(green, simulated). The small difference between the unper-
turbed and noncollided fractions is due to the sharp cut at
z ¼ 0.125 mm. In addition, we find that the computed
temperature difference ΔT between the kinetic temperature
of the tagged Cs atoms and the cloud temperature decays
exponentially with the number of average collisions Nave
with a 1=e decay constant of 1.3 collisions [Fig. 3(b)].
This indicates thermalization after a few collisions. We
estimate, for example, a relative temperature difference of
ΔT=T ≃ 2% after 4 × 1.3 ¼ 5.2 collisions.
We next test the validity of the stochastic Langevin

approach by simulating single-particle Langevin trajecto-
ries [6]. For discrete time steps dt, the Langevin equation
for the velocity v⃗ of a tagged particle takes the form [7]

v⃗ðtþ dtÞ ¼ v⃗ðtÞ þ ðF⃗drag þ F⃗rand − ∇⃗UÞ dt
m
: ð2Þ

Here, F⃗drag ¼ −γv⃗ is a drag force with friction coefficient γ,
F⃗rand a fluctuating force, and −∇⃗U the confining force
including gravity. While for large, heavy test particles the
friction coefficient γ is velocity independent, it acquires
an explicit velocity dependence for small, light particles
[15,16]. It is theoretically shown that [15,16,21]

γðvÞ ¼ nσ
8

15
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2M
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r

mðMv2=2þ 5kTÞ
ðmþMÞ ð3Þ

to order ðM=mÞ3=2 and for values of mv2=ð2kTÞ not much
larger than unity. To our knowledge, the predictions of the
Langevin equation with speed-dependent damping coef-
ficient (3) have not been verified experimentally so far.
We also note that owing to the detailed-balance condition,
the nonlinear friction (3) implies a multiplicative, velocity-
dependent fluctuating force [21,26]. We refer to Ref. [31]
for a review on nonlinear Brownian motion.
Results of Langevin simulations are presented in Fig. 4

and Ref. [21]. To account for losses, tracer atoms are

(a)

(b)

(c)

FIG. 2. Measured (blue shaded) and collision-simulated (red
line) spatial distributions after an interaction time of 25 ms for Rb
center densities of (a) n¼6×1012cm−3, (b) n ¼ 2.6 × 1013cm−3,
and (c) n ¼ 3.2 × 1013cm−3. The simulations are performed with
1500 atoms and normalized to the measured distribution. The
agreement is excellent for both diffused (left) and unperturbed
(right) fractions with an overlap larger than 90%. The unper-
turbed fraction is mostly composed of tracer atoms that have not
suffered any collision (green, simulated).
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removed at each time step with probability Ploss. Again,
cloud density n, and thus friction coefficient γ, were
evaluated at the position of the tagged atom. We observe
that the diffused fraction of Cs atoms is well described by the
Langevin simulations, without free parameters, for all values
of the Rb density. However, as expected, the unperturbed
fraction is not captured by the Langevin approach, which
assumes that all test particles experience damping and
fluctuations. The overlap between the simulated and mea-
sured spatial distributions for the diffused fraction is larger
than 90%. We again ascribe the small deviation to the
experimental uncertainties of the reference measurements.
By contrast, Langevin simulations with the usual velocity-
independent friction coefficient (brown line in Fig. 4) yield
overlaps as low as 60% [21]. We further note that the 1=e
momentum damping time γ=m≃ 250 μs for a density of
n ¼ 2 × 1013cm−3, is just a factor of 2 larger than the mean
intercollision time, confirming the dominating role of
individual collisions during thermalization.
The following picture emerges from our investigations.

Our ability to accurately identify the effect of a single
collision allows for the distinction of two different types
of dynamics. Thus, Cs atoms that do not experience any
collision pass ballistically through the dilute Rb cloud
(unperturbed fraction). By contrast, a single collision event
dissipates on average more than half of the initial non-
thermal kinetic energy and suffices to trap a tagged Cs atom
inside the cloud, leading to additional collisions (diffused

fraction). After few more collisions, a tracer atom will be
thermalized with the Rb cloud. Its dynamics is correctly
described, over a wide range of Knudsen numbers, by a
generalized Langevin equation with a velocity-dependent
friction coefficient. The origin of this unfamiliar speed
dependence may be understood by noting that the velocity
v of a heavy Brownian particle (m ≫ M) is much smaller
than that of the gas atoms. As a result, both the collision
rate and the friction coefficient are independent of v in this
limit. By contrast, for an atomic tracer with a mass m≃M,
both velocities are of the same order. Here, an explicit
velocity dependence of the collision rate and of the friction
coefficient can no longer be neglected. However, as we
have shown, in both cases, a highly successful continuous
Langevin description over a coarse-grained time scale
larger than the mean free time between impacts is possible.
The high tunability of our system further paves the way for
detailed studies of diffusion in unexplored regimes. The
tracer particle can be tightly controlled via, e.g., shape or
dimensionality of its confining potential, including disor-
der, while the coupling to the bath can be adjusted via
Feshbach resonances [32,33]. Finally, quantum Brownian
motion could be accessed by lowering the temperature [34].
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FIG. 3. (a) Measured (blue squares) and collision-simulated
(red dots) relative number of atoms in the unperturbed fraction
(z > 0.125 mm) for various maximum Rb densities nmax. Good
agreement with simulated collision-free atoms (green hexagons)
is observed. Error bars are smaller than the size of the symbols.
(b) Simulated exponential decay of the differenceΔT between the
Cs kinetic temperature and the Rb temperature, as a function of
the average number of collisions Nave in a homogeneous cloud.
The solid line is an exponential fit to the data with a 1=e number
of collisions of 1.3.
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FIG. 4. Measured (blue shaded) and the Langevin-simulated
spatial distribution (blue line for velocity-dependent friction,
brown line for velocity-independent friction [21]) for the same
data as in Fig. 2. Excellent agreement is found for the thermalized
diffused fraction (left) between measured data and Langevin
description based on velocity-dependent friction, with overlap
larger than 90%. By contrast, the velocity-independent descrip-
tion yields only poor agreement with measured data with overlaps
as low as 60%. In both cases, the Langevin equation (2) does not
capture the unperturbed fraction (right).
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