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In the context of Lin-Lunin-Maldacena geometries, we show that superpositions of classical coherent
states of trivial topology can give rise to new classical limits where the topology of spacetime has changed.
We argue that this phenomenon implies that neither the topology nor the geometry of spacetime can be the
result of an operator measurement. We address how to reconcile these statements with the usual
semiclassical analysis of low energy effective field theory for gravity.
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One of the main claims of the AdS=CFT correspondence
[1] is that it provides a definition of quantum gravity for
spacetimes that are asymptotically of the form AdS × X. It
is natural to ask what the holographic description tells us
about the nature of observables in a quantum theory of
gravity.
By an observable, we mean a Hermitian (linear) operator

on the Hilbert space of states as is usual in quantum
mechanics. In this context, is the metric a quantum
mechanical observable? Is topology measurable by an
observable? And if the answer is no, then when are they
sufficiently well approximated by observables?
We define T̂ to be a topology measuring operator if

different eigenvalues correspond to different topologies of
the dual gravity theory and the zero eigenvalue is reserved
for the trivial topology alone. Here, trivial means the same
topology as the ground state. Our main conclusion is that
such topology measuring operators do not always exist. We
support this by providing an example where one can prove
that there is no such operator.
The example arises from studying the states that preserve

half of the supersymmetries of N ¼ 4 Super-Yang-Mills
theory and their dual geometries.
The set of states we are interested in forms a Hilbert space

in its own right. Quantum mechanics is therefore valid and
quantum mechanical questions can be answered unambigu-
ously. The relevant Hilbert space of states near the free field
theory limit gYM → 0 has been analyzed in Ref. [2]. An
orthogonal basis of states of energyE ¼ n can be represented
by partitions of n, which can be written in terms of Schur
polynomials and are classified by Young tableaux for UðNÞ.
These states can also be represented in terms of free fermion
dynamics forN fermions in the lowestLandau level onaplane
[3]. This description gives rise to a geometric interpretation of
states as incompressible droplets in two dimensions. These
free fermions can also be described by the incompressible
droplets of the integer quantum Hall effect [4].
The geometric droplet shape is exactly the geometric

data that are required to build a horizon-free solution of

type IIB supergravity that respects the same amount of
supersymmetry and that also asymptotes to AdS5 × S5, as
constructed by Lin-Lunin-Maldacena (LLM) [5]. We will
call these the LLM geometries. In these geometries,
different droplet topologies correspond to different space-
time topologies.
There exists a limit of the LLM geometries where a

complete minisuperspace theory characterizing all the
states with the requisite amount of supersymmetry, as a
quantum theory, is identical to the Hilbert space of a free
chiral boson on a circle in 1þ 1 dimensions. This limit is
the strict N → ∞ limit of the theory, with the energy above
the ground state kept finite. The mode expansion of the
chiral boson can be related to traces of the N ¼ 4 Super-
Yang-Mills fields Z by a†n ≃ trðZnÞ via the usual operator-
state correspondence and the understanding that single
traces go to single particle modes [6]. In this limit, the
oscillators give rise to a free Fock space, with a free mode
for every n. We will take the existence of this limit as a
statement of fact and it is in this limit that our statements
can be made rigorously. Many of the technical details that
are required to prove some claims in this Letter will appear
in a forthcoming paper by the authors [7].
This Letter makes the claim that topology cannot be

measured by operators. To make the claim, we need the
following assumptions about the particular setup we have.
(1) All coherent states of the chiral boson theory with finite
energy have trivial topology (the same as the vacuum) and
are to be thought of as smooth classical geometries. (2) The
set of these coherent states is overcomplete, so every other
state in theHilbert space can be obtained by superposition of
this family of states. (3) There are states in the Hilbert space
that have a different topology than the vacuum and can also
be thought of as classical states of the gravitational theory.
From these assumptions, it follows that there is no

operator T̂ in the Hilbert space that measures the topology.
We now prove this statement by contradiction, assuming
the existence of T̂.
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From assumption 1 above, all coherent states have trivial
topology, so T̂jCohi ¼ 0. Any other state jψi that is a
superposition of coherent states will satisfy

T̂jψi ¼ T̂
Z
Coh

ACohjCohi ¼
Z
Coh

ACohT̂jCohi ¼ 0 ð1Þ

so the ket jψi is an eigenstate of the topology operator with
eigenvalue zero: it has trivial topology. By condition 2
above, this includes all possible states. Therefore, if such an
operator exists, all states have trivial topology. This contra-
dicts the third assumption. A related argument where
overcompleteness is used to indicate problems with defin-
ing either topology operators or geometric operators is
found in Refs. [8,9]. These arguments are made in the
ER ¼ EPR context [10] for setups with entangled black
holes, and the topology change is hidden behind a horizon
in an Einstein-Rosen bridge.
Wewill now elaborate on the basis for assumptions 1 and

3. Assumption 2 is a well known fact for studying states of
a finite number of harmonic oscillators. It can be extended
to the case of an infinite number of oscillators by carefully
taking the appropriate limits.
A geometric picture of the states can be obtained as

follows. In the LLM geometries, all states can be drawn as a
two color picture in two dimensions. The individual droplet
areas of both colors are quantized. As we are focusing on
N → ∞, keeping the energy finite, all relevant states are
close to the circular droplet that makes the vacuum. We
want to focus on the edge of the droplet, by using an area
preserving map

dxdy≃ rdrdθ ¼ dhdθ; ð2Þ

where the variable h will be measured relative to the
circular droplet. In this setup, the N → ∞ limit is taken by
sending r → ∞, keeping h finite. In this limit, jhj can be as
large as we need it to be. The topology of the ðh; θÞ space is
a cylinder. The vacuum has the area below h ¼ 0 com-
pletely filled, and above h ¼ 0 completely empty. We can
excite fermions from the filled region to the empty region
and will characterize this shift by a density function Δρ,
which takes on a value þ1 for regions above h ¼ 0 and −1
below. Conservation of the fermion number is implemented
by

R
dhdθΔρ ¼ 0. The energy relative to the vacuum is

measured by

E≃
Z

dθdhhðθÞΔρðh; θÞ: ð3Þ

This follows easily from the computations in Ref. [5], being
careful about subtracting the energy of the vacuum.
A typical geometric fluctuation is depicted in Fig. 1. The

fluctuation is described by a single height function hðθÞ
that represents the edge of the droplet.

The function hðθÞ is the excess density of fermions at the
angle θ. It gets matched to the charged current of the chiral
boson as hðθÞ ∝ ∂θXðθÞ. Conservation of fermion number
is described by

R
dθ∂θXðθÞ ¼ 0. That is, the field ∂θX has

no zero mode. This is exactly as is expected from studies of
the quantum Hall effect (see, for example, Refs. [11,12]). It
follows from integrating Δρ over a column in Eq. (3) that
the energy goes to E≃ ð1=2πÞ R dθ∶∂θXðθÞ2∶, where the
normal ordering ensures that the vacuum has zero energy.
This is the standard expression for the energy in the chiral
boson theory. The factor of 2π is a choice of convention for
normalization of the field Fourier modes.
A coherent state of the free chiral boson will result in a

unique (sufficiently smooth) single valued hðθÞ ∝ h∂XðθÞi
such that the classical energy of the state as computed in
Eq. (3) is equal to the expectation value of the energy of the
corresponding quantum state. All of these solutions have a
classical LLM geometry that can be reconstructed uniquely
from hðθÞ. The topology of the geometry is encoded in the
topology of the fermion droplet. All of these states have
trivial topology in the LLM setting: one edge with circle
topology winding once around the circle direction θ. This
justifies assertion 1.
Now we need to justify assertion 3. This can be done

with Fig. 2. The idea is that we can also do a two coloring
of the cylinder that preserves the net area and is such that
the topology is now characterized by a strip geometry. In
this case, there are three edges winding around the circle,
two of them go from black to white (at heights h1, h2) and

FIG. 1. A geometric fluctuation of the vacuum, characterized
by hðθÞ.

FIG. 2. Examples of two colorings with nontrivial geometry.
On the left, the areas L,M have quantized area L,M, respectively.
On the right, we depict a more general folded configuration; it is
also multivalued but not translation invariant.
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the other one goes from white to black (at height ~h1). Edges
with the opposite coloring will be called antiedges. We call
this state the reference state j□LMi. This state is easily
constructible in terms of Young diagrams [5]. One can also
consider folded configurations (which are not translation
invariant) as in the drawing on the right of Fig. 2.
Small fluctuations of the state j□LMi will be charac-

terized by three functions h1ðθÞ ¼ hð0Þ1 þ δh1ðθÞ, h2ðθÞ ¼
hð0Þ2 þ δh2ðθÞ, and ~h1ðθÞ ¼ ~hð0Þ1 þ δ ~h1ðθÞ. Quantization of
the area is implemented by requiring that none of the δhi
have a zero mode in their Fourier coefficients. This can
easily be generalized to more stripes. A straightforward
computation of the energy of such a geometry shows that
the energy, relative to the reference state, is given by

E≃ ELM þ
Z

dθ
X
i

ðδhiðθÞ2 − δ ~hiðθÞ2Þ ð4Þ

with the edge modes having positive excess energy and the
antiedge modes having negative excess energy. The net
fermion over density at position θ is ∂XðθÞ≃ h1ðθÞþ
h2ðθÞ − ~h1ðθÞ. The absence of the zero mode for ∂XðθÞ
results in hð0Þ1 þ hð0Þ2 − ~hð0Þ1 ¼ 0. This determines the loca-
tion of the reference height, which tells us that the reference
state depends only on L, M, with no extra parameters.
We now claim that the new topology is generated by

making the height function in j□LMi, hðθÞ multivalued (in
this sense folded states should be considered as states with
different topology). The function hðθÞ is related linearly to
∂XðθÞ in the classical coherent state setup. The net ∂XðθÞ
that reflects a proper observable in the quantum system is
obtained by a signed sum over these multivalues. Indeed,
because all the edges are similar, one can imagine that
to each of the edges one could associate a chiral boson
field theory so that ∂XðθÞ ¼ ∂X1ðθÞ þ ∂X2ðθÞ − ∂X ~1ðθÞ.
Because in Eq. (4) the tilded modes have the wrong sign,
the notion of raising and lowering operators is reversed. We
can rewrite this equation in a mode expansion

a†n ¼ bð1Þ†n þ bð2Þ†n − cð
~1Þ
n ; ð5Þ

where the b modes refer to regular edges, and the c modes
to the antiedges. Notice, without the lowering operator
pieces in Eq. (5), the necessary commutation relations of
the an modes could not be satisfied. This also gives the
correct equations of motion for ∂X, with each of the modes
satisfying them on their own. The negative energy asso-
ciated with the modes c is crucial, so that the notion of
positive and negative frequency can reverse the assignment
of raising and lowering operators. This equation can be
thought of as a partial Bogolubov transformation mode by

mode. The reference state is characterized by bðiÞn j□LMi ¼
cð

~iÞ
n j□LMi ¼ 0 for all n. A similar analysis for a folded

configuration would require decomposing in modes that
also have position resolution and the multivaluedness, as
well as that the partial Bogolubov transformation be
assessed locally in θ. Folded configurations cannot evolve
from unfolded configurations in this setup, but they can in
the c ¼ 1 matrix model [13].
The linearity of the mode decomposition for strip

geometries has already been suggested in Ref. [14] (see
also the more recent Ref. [15]). The construction of such
modes is purely combinatorial and depends on knowing
how to manipulate the states labeled by Young tableaux
carefully. The commutation relations of the b, c modes are
canonical for states near the reference state. This can be
deduced from Ref. [17]. We take these to be

½bðiÞn ; bðjÞ†n � ¼ nδi;j ð6Þ

and similar for c, with all other commutators vanishing.
These assertions are proven in the companion work to this
Letter [7], where the details on the cutoff and the appli-
cability of these commutation relations are deduced from
first principles. The nearby states form a small Hilbert
space in their own right. The commutation relations are
valid when inside the small Hilbert space, but they get
corrected as we try to include more states.
These new modes only extend to values of order

n ≪ M;L. Beyond that they do not exist as independent
operators [7]. This is a type of stringy exclusion principle of
the same type as the one implemented in Ref. [16]. It is
dynamically generated and depends on the reference state
(depends on L, M). The modes b, c do not exist for any of
the coherent states jCohi that we have discussed previously.
For those states, the height function is single valued. We
should not be able to extend the definition of these modes to
those states. We claim we are prevented from doing so by
the stringy exclusion principle. The existence of these strip-
geometry states justifies our third assumption, and therefore
completes our argument that one cannot have a topology
measuring operator.
Does this lack of a topology measuring operator mean

we simply cannot determine the topology of the space-
time? In the remainder of the Letter, we will give two
resolutions: one that involves measuring classicality of the
state and one that involves its entanglement. Both of these
rely on computing quantities that are nonlinear in the
wave function, rather than performing a single operator
measurement.
Consider forming coherent states of the b, c oscillators,

which can be interpreted as new classical solutions relative
to the state j□LMi, with δhiðθÞ ∝ h∂XiðθÞi and similar for
the antiedges. These are allowed as long as the tails in the
coherent state can be truncated without appreciable loss of
information.
The existence (construction) of the b, cmodes means we

can do (unitary) effective field theory in the nearby Hilbert

PRL 118, 261601 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
30 JUNE 2017

261601-3



space with them. We just need to restrict ourselves to being
well below the stringy exclusion principle. The small
Hilbert space is constructed by acting with finitely many
raising operators b†, c†, keeping the total energy in the b
modes less than minðL=2;M=2Þ, and the total negative
energy in the c modes less than minðL=2;M=2Þ. In that
regard, the operators a†n, an well below the (dynamical)
stringy exclusion principle act inside the small Hilbert
space, leaving the new state inside it. Any quantum
mechanical question about them can be answered in
principle in the small Hilbert space: they belong to the
effective field theory. This explains why effective field
theory is still valid in the gravity theory.
Consider taking the expectation value of the number

operator N̂n for mode an in the reference state (this is easy
to do for multiedge geometries). We find that

hn−1a†naniLM ¼ Nantiedges hn−1ana†niLM ¼ Nedges ð7Þ

so the expectation value of the number operator (on
reference states) can be used to measure the topology,
mode per mode. The number operator can change a lot
when we consider coherent states of the b, c modes. Let us
call one such state jψi. Consider instead of the number
operator, the uncertainty. A straightforward manipulation
shows that

hn−1ða†m − ha†miψ Þðan − haniψÞiψ ¼ Nantiedgesδn;m: ð8Þ

We see that the topology of the coherent states of the b, c
oscillators, the new classical states, can be measured by
computing the net fluctuations of the modes a†n. These are
still of quantum size (order ℏ), so the state can be said to be
approximately classical for each of the modes an. In taking
a double scaling limit ℏ → 0, implemented by taking L,
M → ∞ and rescaling the fields by appropriate powers of
L,M, the rescaled uncertainty vanishes. In this sense, these
topologically different drawings provide new classical
limits of the free chiral boson. Similar limits for folded
setups have been considered in the c ¼ 1 matrix model
[13], where it is found that in general hhðθÞ2 − hhðθÞi2i is
large, but does not measure the number of edges directly. In
folded configurations the mixed correlator (8) will be a
nondiagonal matrix, which encodes the Fourier transform
of the local number of edges [7].
The topology for the state j□LMi is measurable by the

uncertainty. This is a nonlinear operation in the Hilbert
space: it is not a single operator measurement, but a test of
classicality. If we want to extend the measurement of
topology to the semiclassical limit, we need to allow a few
quanta of b, c modes to be in a state that is not a coherent
state. We find that to measure the topology we have to ask
each mode an what value of uncertainty it measures. The
few modes that are outliers can be discarded and the
majority rule will be used. We call this a census

measurement. The best answer for the topology will be
given by the consensus of the majority. This depends highly
on what scale we use to cut off the census. This should be
determined by the stringy exclusion principle, which is
related to the value of L, M. But, we do not know these
a priori: the state is given to us as a black box. If the cutoff
is set at a scale much larger than L, M, most of the an
modes will be in the vacuum and we would find that state
has a trivial topology. If the cutoff is set well below L, M,
the consensus might give a different topology than if we
measure near L,M. This is because the b, c, modes may be
forming thinner striped states on their own.
We will next use the idea that spacetime geometry and

entanglement seem to be intimately related. We compute
the entanglement entropy using the Bogolubov transfor-
mation. Starting with a coherent state of the b, cmodes, we
find

Sn ¼ Nedges lnNedges − Nantiedges lnNantiedges; ð9Þ

where everything but the an modes has been traced out.
As with the previous method, we need to perform this
computation for many modes and find a consensus to
determine the topology of nearby semiclassical states. One
can also check that in the strip geometries there is no
mutual information between the long wavelength modes.
Nontrivial mixed correlators in Eq. (8) would produce such
mutual information in folded configurations. This would
distinguish them from multistrip geometries. We can only
be sure of the accuracy of these calculations for modes
below the stringy exclusion principle. The connection we
find between topology and entanglement supports the ideas
of Van Raamsdonk [18]. Related ideas about connectedness
being related to entanglement are currently being devel-
oped by Almheiri et al. [19].
It is important to note that we have been working in the

strict N → ∞ limit. At finite N, there is no longer a
canonical factorization of the Hilbert space, so computing
the entanglement entropy becomes ambiguous. This sug-
gests that the uncertainty measurement definition of top-
ology might be preferable in general.
Further, at finite N, the Planck scale scales as

l−1
p ≃ N1=4. If L, M ≫ N1=4, there are many more modes

with energy below l−1
p in the geometry with the striped

topology than when computed in the ground state of the
system. These all commute with each other. To describe
these multidroplet geometries, one needs to borrow super-
symmetric modes from the ultraviolet (UV) [20]. To end up
with the extra finite energy modes, whose energies are of
order 1, one needs the UV modes to be excited. That way,
the UV modes do not annihilate the reference state and one
can form a bound state of a mode that raises the energy with
another mode that lowers it. These UV states that lower the
energy count as large negative energy excitations relative to
the reference state. Bound states at a threshold between the
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large positive energy excitations and the large negative
energy excitations provide a solution to the presence of the
extra modes and an explanation for the modes c with
negative energy.
We have shown that states with nontrivial topology

can be formed by superposing topologically trivial
states. Aspects of the topology for multistrip geometries
can be accessed either by computing the uncertainty
or the entanglement entropy of the different modes.
Neither of these two methods of measurement corre-
sponds to an operator measurement in the Hilbert space
of states.
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