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We consider the scenario where dark matter (DM) is represented by an ultralight classical scalar field
performing coherent periodic oscillations. We point out that such DM perturbs the dynamics of binary
systems either through its gravitational field or via direct coupling to ordinary matter. This perturbation gets
resonantly amplified if the frequency of DM oscillations is close to a (half-)integer multiple of the orbital
frequency of the system and leads to a secular variation of the orbital period. We suggest using binary
pulsars as probes of this scenario and estimate their sensitivity. While the current accuracy of observations
is not yet sufficient to probe the purely gravitational effect of DM, it already yields constraints on direct
coupling that are competitive with other bounds. The sensitivity will increase with the upcoming radio
observatories such as the Square Kilometer Array.
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Introduction.—Despite years of intensive research, the
nature of dark matter (DM) remains unknown. An inter-
esting possibility is that DM is represented by a very light
boson with extremely weak, if any, coupling to the fields of
the standard model; see Ref. [1] for a recent review. Such
DM candidates are common in many models of new
physics including the axion solution to the strong CP
problem [2–4], the relaxion mechanism for the origin of the
electroweak symmetry breaking [5], and string theory [6,7].
Huge particle occupation numbers required to reproduce
the DM density imply that such ultralight dark matter
(ULDM) is well described by a classical scalar field Φ. For
a single field to be all of the DM, the anharmonicities of the
potential are constrained to be small when the field starts
oscillating at H ∼mΦ (with H the Hubble rate) [8]. Since
the amplitude of the field at that moment is larger than its
present amplitude in the galactic halo, we will neglect
possible self-interactions of Φ.
A lot of effort has been devoted to identify observations

and experiments sensitive to ULDM. Very light candidates
with masses mΦ ≲ 10−24 eV are excluded as the dominant
DMcomponent by the observations of the cosmicmicrowave
background and large-scale structure [9]; future observations
are expected to push the lower bound tomΦ ∼ 10−23 eV [10].
Slightly heavier ULDM in the range mΦ ∼ 10−23–10−21 eV
can be probed by the Lyman-α forest, galaxy formation
history, and the structure of galactic halos [11–16]; a
complementary probe is provided by the Pulsar Timing

Arrays (PTA) [17,18]. The mass range up to mΦ∼
10−18 eV can, in principle, be accessible to 21 cm surveys
[19]. Scalar fields with mΦ ∼ 10−14–10−10 eV would be
produced by rotating stellar mass black holes via super-
radiance,which implies various observable signatures includ-
ing gravitational wave emission in the LIGO sensitivity band
[20,21]. Future studies of supermassive black holes can
potentially access lighter masses mΦ ∼ 10−20–10−15 eV.
The gravitational effect of ULDM on laser interferometers
was explored in Ref. [22].
The previous observations probe purely gravitational

interactions of ULDM. If ULDM has a direct coupling to
ordinarymatter the possibilities to test it aremore diverse and
depend on specific models. A rather generic effect of ULDM
is periodic modulation of the standard model couplings and
particle masses with time. A number of proposals have been
recently put forward to search for such variations using
atomic clocks [8,23–27], accelerometers [28], resonant-mass
detectors [29], laser and atom interferometry [30–33].
In this work we propose using observations of binary

pulsars as a probe of ULDM in the mass range mΦ∼
10−23–10−18 eV. The exquisite precision of the measure-
ments combined with the clean theoretical description makes
binary pulsars highly sensitive to new physics that affects the
dynamics of massive objects [34,35]. This property has
already been exploited to constrain alternatives to general
relativity [36,37] and led to the suggestion to use binary
pulsars as resonant detectors of the stochastic gravitational
wave (GW) background [38] (see Refs. [39–43] for related
earlier works). The influence of DM composed of weakly
interacting heavy particles on the dynamics of binary pulsars
was studied in Ref. [44].
The main idea of our approach is close in spirit to

Refs. [38–43] and can be summarized as follows. The
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ULDM fieldΦ in the galactic halo represents a collection of
plane waves with frequencies (we use units c ¼ ℏ ¼ 1.)
ωΦ ≃mΦ þmΦv2=2 and momenta kΦ ≃mΦv, where
v ∼ 10−3 is the typical virial velocity in the halo.
Neglecting the term mΦv2=2 in the frequency we obtain
the general form of the ULDM field,

Φðx; tÞ ¼ Φ0ðxÞ cosðmΦtþϒðxÞÞ; ð1Þ
where Φ0ðxÞ and ϒðxÞ are slowly varying functions of
position. A binary system embedded in the DM back-
ground (1) will experience periodic perturbation due to the
change in the gravitational field ofΦ and, in the presence of
a direct coupling, due to the change in the masses of the
stars in the binary. If the frequency of the perturbation
happens to be close to an integer multiple of the binary
orbital frequency, its effect is resonantly amplified and
leads to a secular change in the orbital period that can be
searched for experimentally. We now proceed to the
quantitative discussion. We start with the case when DM
and ordinary matter interact only gravitationally.
ULDM interacting only through gravity.—The energy-

momentum of a free massive oscillating field (1) corre-
sponds to the density and pressure [17],

ρDM ¼ m2
ΦΦ2

0

2
; pDM ¼ −ρDM cosð2mΦtþ 2ϒÞ: ð2Þ

The latter generates an oscillating perturbation of the
metric. To find this we use the Newtonian gauge,

ds2 ¼ −ð1þ 2ϕÞdt2 þ ð1 − 2ψÞδijdxidxj; ð3Þ
and write down the trace of the ðijÞ Einstein equations,

6ψ̈ þ 2Δðϕ − ψÞ ¼ 24πGpDM:

Neglecting the spatial gradients and using Eq. (2) we
obtain,

ψ̈ ¼ −4πGρDM cosð2mΦtþ 2ϒÞ: ð4Þ
This can be viewed as a standing scalar GW. Similarly to
the usual GW’s, it produces an extra relative acceleration
between the bodies in a binary system. This is conveniently
written in the Fermi normal coordinates associated with the
center of mass of the binary [41],

δ̈ri ¼ −δRi
0j0r

j ¼ −ψ̈ri; ð5Þ
where ri is the vector connecting the two bodies and δRi

0j0

is the contribution of GW into the corresponding compo-
nents of the Riemann tensor. In the last equality we
evaluated δRi

0j0 in the conformal gauge (3) since it is
coordinate independent at the linearized level.
Next, we compute the change in the energy of a binary

system with masses M1;2 during one orbital period Pb due
to its interaction with ULDM,

δEb ¼ μ

Z
Pb

0

_riδ̈ridt

¼ 4πGρDMμ
Z

Pb

0

_rðtÞrðtÞ cosð2mΦtþ 2ϒÞdt;

where r is the distance between the bodies and μ≡
M1M2=M1 þM2 is the reduced mass of the system. The
energy exchange is most efficient when the orbital period is
close to an integer multiple of the period of metric
oscillations. Given that Pb ∝ jEbj−3=2, the change in
Keplerian energy leads to a secular drift of the orbital
period. Defining

δω ¼ 2mΦ − 2πN=Pb; jδωj ≪ 2mΦ; ð6Þ
and using the standard formulas of Keplerian mechanics,
we obtain the time derivative of the period averaged over
time intervals Δt satisfying Pb ≪ Δt ≪ 2π=δω,

h _Pbi ¼ −6GρDMP2
b
JNðNeÞ

N
fðtÞ

≃ −1.6 × 10−17
�

ρDM
0.3 GeV

cm3

��
Pb

100 d

�
2 JNðNeÞ

N
fðtÞ;

ð7Þ
where

fðtÞ ¼ sinðδωtþ 2mΦt0 þ 2ϒÞ;
JNðxÞ are Bessel functions, e is the orbital eccentricity, and
t0 is the time of the first periastron passage since t ¼ 0.
In the second line of Eq. (7) we have normalized ρDM
to the local DM density ∼0.3 GeV=cm3 in the neighbor-
hood of the Solar System. We observe that, depending on
the relative phase between the orbital motion and the
ULDM oscillations, the sign of h _Pbi can be negative
(decrease of the binary system energy) or positive (increase
of the energy). Furthermore, the sign alternates in time with
the period 2π=δω ≫ Pb, which can be used to discriminate
this effect from other contributions to the measured _Pb,
such as, e.g., those due to the acceleration of the binary with
respect to the Solar System.
The expression (7) implies that the effect vanishes for

circular orbits (e ¼ 0) and grows with the orbital eccen-
tricity. Besides, it is stronger for systems with large orbital
periods. These points are illustrated in Fig. 1. We see that
slow nonrelativistic systems with orbital periods of tens to
hundreds of days and high eccentricity present suitable
targets to search for ULDM in the mass range
mΦ ¼ 10−23–10−21 eV. At present there is a dozen of
known binary pulsars satisfying these requirements [45];
this number is expected to increase dramatically with the
operation of the Square Kilometer Array [46]. Note that for
such systems the strength of the resonance on higher
harmonics (N ≥ 2) is comparable to the strength of the
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main resonance (N ¼ 1), which implies that a single
eccentric binary probes several different ULDM masses.
Detecting h _Pbi induced by pure gravitational interaction

of ULDM will be challenging. It will require the accuracy
of at least 10−16 in the determination of this quantity for
nonrelativistic binaries. Currently such precision has been
achieved for the double pulsar PSR J0737-3039A/B [47],
whose orbital period is, however, too short (Pb ≈ 0.1 d) to
be sensitive to the gravitational effect of ULDM (the
situation is different in the presence of direct coupling,
see below). One may hope that the peculiar periodic
modulation of h _Pbi predicted by Eq. (7) and the expected
correlation of its phase among systems located within the
coherence length of ULDM can be used to increase
the sensitivity of the search. A proper estimation of the
measurability of these effects is beyond the purpose of this
Letter. Still, let us comment on what could be an optimal
scenario. For the modulation to be, in principle, detectable
one needs to observe the system for at least half of
the period Tobs ≳ Tmod=2 ¼ π=δω. The uncertainty in the
measurement of h _Pbi for a constant secular drift scales as
T−5=2
obs [48]. For a modulated signal, the drift in Pb can be

considered as approximately constant for half of the period.
So, we will take as a conservative estimate for the error
Δh _Pbi ∝ ðTmod=2Þ−5=2. Thus, long modulations are pref-
erable for detection (the closer the system is to the
resonance, the better); still, they should stay within the
range Tmod ≲ 2Tobs. An additional handle is provided
by ULDM-induced secular variations in other orbital
parameters [49].

A complementary way to improve the sensitivity to
ULDM is to look for binary systems in a denser DM
environment. The Navarro-Frenk-White halo profile [50]
predicts an increase of ρDM up to ∼10 GeV=cm3 within
0.5 kpc distance from the Galactic center (In the ULDM
scenario the inner part of the Milky Way halo can contain a
solitonic core which may further increase ρDM in the
vicinity of the Galactic center [51]. However, the size of
the core is smaller than 0.5 kpc.). The impact of such
increase on h _Pbi is shown in Fig. 1 by gray lines.
The possibility to discover the previous effects in future

measurements strongly depends on the characteristics of
each individual observed system. Since these are currently
unknown, a precise forecast of detectability is impossible at
the present stage. An insight can be gained from the
analysis of simulated mock samples. This study must be
performed in the future to assess the actual measurability of
the purely gravitational effect.
ULDM directly coupled to matter.—We now assume that

ULDM interacts directly with the bodies in the binary by
affecting their masses,

M1;2ðΦÞ ¼ M1;2ð1þ αðΦÞÞ; jαðΦÞj ≪ 1: ð8Þ

For simplicity, we focus on the case of universal coupling
(Namely, we assume all particle species couple to the same
effective metric that depends on the scalar field and hence
the weak equivalence principle is preserved.), the case of
different couplings will be treated elsewhere [49]. In what
follows we will neglect the gravitational interaction
between ULDM and the binary. Then in the nonrelativistic
limit the system is described by the Lagrangian,

L¼M1ðΦÞ
�
1þv21

2

�
þM2ðΦÞ

�
1þv22

2

�
þGM1ðΦÞM2ðΦÞ

r
:

By combining the equations of motion of the two bodies
we obtain that their relative acceleration acquires a con-
tribution proportional to the direct coupling,

δ̈ri ¼ −
dα
dΦ

_Φ_ri − αðΦÞGðM1 þM2Þri
r3

: ð9Þ

As in the case of the pure gravitational interaction, this
leads to the change in the Keplerian energy and hence a
secular drift of the orbital period. Below we consider two
choices for the function αðΦÞ.
Linear coupling αðΦÞ ¼ Φ=Λ1.—In this case the con-

dition for the resonance reads,

δω ¼ mΦ − 2πN=Pb; jδωj ≪ mΦ:

Evaluating the energy change due to Eq. (9) and relating it
to the derivative of the orbital period we obtain,

FIG. 1. Secular derivative of the orbital period given in Eq. (7)
as a function of the dark matter mass. We have set fðtÞ ¼ −1 for
the numerical estimate. Solid lines assume resonances for N ¼ 1
(mΦ ¼ π=Pb), while dashed ones are for N ¼ 2 (mΦ ¼ 2π=Pb).
The corresponding orbital periods are shown on the two top axes.
The pink (lower) lines correspond to ρDM ¼ 0.3 GeV=cm3 and
e ¼ 0.01, the blue (middle) lines are for the same ρDM but
e ¼ 0.9, while the gray (upper) lines correspond to ρDM ¼
10 GeV=cm3 and e ¼ 0.9. The olive band on the left marks
the regionsmΦ ≲ 2.3 × 10−23 eV, which can be probed by future
pulsar timing arrays [17].
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h _Pbi≃2.5×10−12
�

ρDM
0.3GeV

cm3

�1
2

�
Pb

100 d

�

×

�
1023GeV

Λ1

�
JNðNeÞsinðδωtþmΦt0þϒÞ: ð10Þ

Quadratic coupling αðΦÞ ¼ Φ2=ð2Λ2
2Þ.—Here we are

back to the resonant condition (6) and the ULDM-induced
variation of the orbital period is

h _Pbi≃ 1.1 × 10−11
�

ρDM
0.3 GeV

cm3

��
Pb

100 d

�
2

×

�
1016 GeV

Λ2

�
2 JNðNeÞ

N
sinðδωtþ 2mΦt0 þ 2ϒÞ:

ð11Þ
Similar to Eq. (7), the expressions (10) and (11) vanish for
circular orbits implying that systems with higher eccen-
tricity are preferred to search for the effect.
Current constraints on Λ1;2 come from several sources.

Linear coupling to a light scalar field modifies the attraction
between massive bodies. This occurs even if Φ is not the
DM and has been constrained by Doppler tracking of
the Cassini spacecraft [52] yieldingΛ1 ≳ 1021 GeV. On the
other hand, this bound does not apply to the quadratic
coupling, leaving a much milder constraint from astro-
physical processes and short-distance tests of gravity Λ2 ≳
104 GeV [23,53]. For a scalar field comprising ULDM
additional bounds arise due to the constraints on the GW
background. Indeed, the direct coupling of the scalar field
to masses (8) can be absorbed by a redefinition of the
metric to the so-called Jordan frame

gμν ↦ ḡμν ¼ gμνð1þ 2αðΦÞÞ:
Test bodies move along geodesics of ḡμν which has an
oscillatory component due to oscillations of Φ—this is a
scalar GW. The amplitude of such oscillations has been
constrained by PTA data [18] in the low frequency region
(f < 10−7 Hz) and by Cassini tracking (Ref. [54] presents
the limits on the amplitude hc of the stochastic background
of transverse GW’s that can be translated into a bound on
the scalar GW amplitude ψc by identifying hc ≃

ffiffiffiffiffi
15

p
ψc.

This is slightly different from the identification hc ≃
2

ffiffiffi
3

p
ψc used in Refs [17,18] because, unlike pulsar timing,

the light time between the spacecraft and Earth is less than
the GW period, which leads to a different expression for the
average of the stochastic signal.) [54] in the frequency
range f ¼ 10−6 − 10−3 Hz.
Limits on an ULDM-induced contribution into _Pb in the

timing model of binary systems can be used to put further
bounds on the couplings Λ−1

1;2. Taking the reported error in

the determination of intrinsic _Pb for several known systems

as an upper limit on the ULDM-induced contribution we
obtain the constraints presented in Figs. 2, 3. In deriving
them we have set the oscillating factors in Eqs. (10), (11) to
one for the sake of the argument. One observes that they are
competitive with the existing bounds. In particular, the
Hulse-Taylor pulsar B1913+16 [55] provides the most
sensitive probe of the direct ULDM coupling for mΦ
satisfying the appropriate resonance condition; whereas
the systems J1903+0327 [56] and J1748-2021B [57] give
the strongest constraints on the quadratic couplingΛ−1

2 in the
range of mΦ from 2 × 10−22 to 2 × 10−21 eV. The situation
will further improve with the increase of precision in binary
pulsar timing and discovery of new binary systems. To
illustrate this, we report the bounds one would obtain
assuming that the systems considered before are timed at
the best current precision (orange symbols in Figs. 2 and 3).
Realistically, this precision may not be achievable for some
of the systems presented in the plots due to various sources
of intrinsic uncertainty in determination of _Pb. Nevertheless,
it is reasonable to expect that future surveys will discover
new binary pulsars suitable for precision timing and having
periods and eccentricity similar to those of already existing
systems. Note that valuable constraints on ULDM with
masses mΦ ∼ 10−19–10−18 eV can be obtained even from

FIG. 2. Sensitivity of binary pulsar observations to the linear
coupling Λ−1

1 between ULDM and ordinary matter for several
known systems (see the indicated references for their descrip-
tion). Black symbols are constraints derived using the existing
data on _Pb; values above the symbols are excluded. Orange
symbols show the sensitivity that can be achieved assuming _Pb is
measured for a given system with the accuracy 10−16 (see
comments on the feasibility of such measurements in the main
text). Empty symbols correspond to resonances on higher
harmonics (N ≥ 2). The colored regions of the ULDM parameter
space are excluded by PTA [18] (olive), the Cassini test of general
relativity [52] (violet), and the Cassini bound on stochastic GW
background [54] (red). Olive lines show future sensitivities of the
European Pulsar Timing Array (upper) and the Square Kilometer
Array (lower) as estimated in Ref. [28].
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fast binaries with periods down to a few hours. In the low-
mass region binary pulsar observations can be complemen-
tary to future PTA.
The precise values of the bounds from Figs. 2, 3 should

be taken with caution. First, we have set the sine factors in
Eqs. (10), (11) to 1, whereas their accidental suppression if
the phase happens to be close to an integer multiple of π is
not excluded. This option would be reliably ruled out by
studying an ensemble of systems, which would allow us to
average over the phases. At the moment such a study is
impossible due to the lack of statistics. Second, in the case
of quadratic coupling one should take into account the
screening effect when relating the bounds on Λ2 from
binary pulsars to the parameters in the particle physics
Lagrangian. Indeed, a quadratically coupled scalar field
acquires effective mass m2

eff ∼ ρ=Λ2
2 inside an object with

density ρ. If the corresponding Compton wavelength is
shorter than the size of the object, the field inside the object
gets frozen at Φ ¼ 0 and only an outer layer of width m−1

eff
interacts with ULDM. This can degrade the bounds on Λ−1

2

by a few orders of magnitude compared to those shown on
Fig. 3 [49].
A peculiarity of the binary pulsar constraint is that every

single system is sensitive to ULDM masses only in a few
narrow bands corresponding to resonances on the first N ≲
10 harmonics. Conservatively, one can require that the
system stays in resonance during the whole observational
campaign, so that the changes in Pb induced by ULDM
accumulate over the time; this would maximize the sensi-
tivity of observations to the effect. This yields an estimate of
the band width δω ∼ 5 × 10−23 eV=ðyears of observationÞ.
While this is much smaller than the total mass range of
interest, the Oð103Þ binary systems with different periods
expected to be discovered by SKA [46] will allow for
significant coverage.
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