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A quantum critical system described at low energy by a conformal field theory (CFT) and subjected to a
time-periodic boundary drive displays multiple dynamical regimes, depending on the drive frequency. We
compute the behavior of quantities including the entanglement entropy and Loschmidt echo, confirming
analytic predictions from field theory by exact numerics on the transverse field Ising model and
demonstrate universality by adding nonintegrable perturbations. The dynamics naturally separate into
three regimes: a slow-driving limit, which has an interpretation as multiple quantum quenches with
amplitude corrections from CFT; a fast-driving limit, in which the system behaves as though subject to a
single quantum quench; and a crossover regime displaying heating. The universal Floquet dynamics in all
regimes can be understood using a combination of boundary CFT and Kibble-Zurek scaling arguments.
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Recent years have witnessed substantial progress in
understanding the dynamics of periodically driven
(Floquet) systems. Such driving has traditionally been used
for engineering nontrivial effective Hamiltonians [1–4], but
recent research has shown that these dynamics can differ
drastically from their static counterparts. Examples include
the recently observed Floquet time crystals [5–9], the
emergence of topological quasiparticles protected by driving
[10,11], Floquet topological insulators [12–17], and Floquet
symmetry-protected topological phases [18–21]. More
broadly, periodically driven systems touch on fundamental
issues in statistical and condensed-matter physics, such as
thermalization [22–26] and phase structure [5].
However, relatively little attention has been paid to driven

systems at criticality, whose low-energy dynamics are often
described by a conformal field theory (CFT). Such quantum
critical systems are a natural setting inwhich to studyFloquet
dynamics, as many insights into the nonequilibrium dynam-
ics ofmany-body systems have come from the study ofCFTs
in 1þ 1d [27–30]. A naïve expectation is that such a driven
critical system would simply heat up. However, in the
presence of a boundary drive, the energy injected per cycle
is not extensive in systemsize, and there aremultiple possible
behaviors in an arbitrarily long period prior to thermal-
ization. Moreover, as CFTs are integrable, it is natural to
expect they can escape heating, even at low frequencies,
provided the scaling limit is taken before the long time limit.
This opens the door to using scaling theory combined with
the analytical toolkit of boundary CFT [31–34] to character-
ize multiple regimes of universal dynamics in such boun-
dary-driven quantum critical points.
In this Letter, we study the dynamics of entanglement

entropy SlðtÞ and Loschmidt echo LðtÞ ¼ jhψð0ÞjψðtÞij2 in
conformally invariant quantum critical systems subject to a
periodic boundary drive. We find two distinct regimes in

which boundary conformal field theory provides an excel-
lent description of the dynamics. For suitably slow drives,
the system behaves almost as though subject to a series of
independent quantum quenches but with amplitude cor-
rections related to multiple-point correlation functions,
while for fast drives, the boundary drive can be averaged
out, and the system responds as though subject to a single
quench at an averaged value of the field. For intermediate
driving frequency, we find universal heating, which crosses
over from a perturbative regime for a weak drive to a
nonperturbative boundary CFT regime for a strong drive.
The dynamics in all driving regimes are universal and can
be described using field-theoretic tools. We numerically
confirm that the dynamics remain robust against adding
integrability-breaking interactions up to the finite times that
may be simulated.
Model.—While our results apply to arbitrary boundary-

driven CFTs, for concreteness, we will focus on the arche-
typical transverse-field Ising (TFI) model on the half line
with a time-dependent symmetry-breaking boundary field

H ¼ −
X
i≥0

ðJσziσziþ1 þ hσxi þ Γσxi σxiþ1Þ − hbðtÞσz0; ð1Þ

with Γ an integrability-breaking perturbation and h ∼ J
tuned to the critical point. This model has a convenient
description in terms of free fermions when Γ ¼ 0, seen by
performing a Jordan-Wigner transformation [35,36], and is
thus an ideal numerical test bed for our model-independent
analytical arguments. We initially prepare the system in the
ground state at fixed boundary field hbðt < 0Þ then quench
on a periodic boundary drive hbðtþ TÞ ¼ hbðtÞ for t ≥ 0.
In equilibrium, the low-energy description of this spin
chain at criticality is well understood in terms of gapless
left- and right-movingMajorana fields, satisfying fηR=LðxÞ;
ηR=LðyÞg ¼ δðx − yÞ, with Hamiltonian
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H ¼ −
iv
2

Z
∞

0

dxðηR∂xηR − ηL∂xηLÞ − λðtÞσbð0Þ; ð2Þ
wherewe dropped irrelevant terms. Here, v is a nonuniversal
velocity (v ¼ 2J for Γ ¼ 0), and λ ∝ hb. In this Majorana
formulation, the boundary spin can be represented as
σbð0Þ ¼ iðηR þ ηLÞγ [47], where γ† ¼ γ is an ancilla
Majorana satisfying γ2 ¼ 1 that anticommutes with all
fields. In the following, we will assume that the drive is
characterized by a single scale ∥hbðtÞ∥ ∼ hb, which we take
to be much smaller than the single-particle bandwidth
hb ≪ Λ≡ 2J ¼ 2 (setting J ¼ 1), for which field theory
is a good equilibrium description. The boundary field is a
relevant perturbation, with scaling dimension Δ ¼ 1

2
< 1 in

the renormalization group (RG) language, with character-
istic time scale tb ∼ jhbj−νb , νb ¼ ð1 − ΔÞ−1 ¼ 2.
There are three energy scales in this problem: the driving

frequency ω ¼ 2π=T, the bandwidth Λ, and the scale of the
boundary perturbation t−1b ∼ hνbb ≪ Λ. We will now con-
sider various orderings of these scales and argue that
essentially all regimes can be understood using a combi-
nation of field theory and scaling arguments, even though
the drive is continuously injecting energy into the system.
While the Hamiltonian (1) for Γ ¼ 0 can be mapped onto
free fermions for numerical convenience [48], we note that
our main conclusions follow from general field theory
arguments and therefore, continue to hold in the non-
integrable case. We emphasize that although we choose to
focus on the Ising field theory (2) as an example, our field-
theoretic arguments are model independent, so our results
carry over immediately to any boundary-driven CFT, such
as a driven quantum impurity problem with t−1b → TK , the
Kondo temperature.
Slow driving regime: step drive.—We start by consid-

ering the slow driving regime ω ≪ t−1b ≪ Λ for a step
drive starting from the initial field hbðt < 0Þ ¼ −hb, with
hbðtÞ ¼ þhb for 0 ≤ t ≤ T=2 (Hamiltonian H1) and
hbðtÞ ¼ −hb if T=2 ≤ t ≤ T (Hamiltonian H0) for t ≥ 0.
Intuitively, this drive looks like independent local
quenches. Focusing on the Loschmidt echo (return prob-
ability) L ¼ jhψ0jψðtÞij2 [49], this behavior is best under-
stood by Wick rotating to imaginary time τ ¼ it, where the
spin-chain Loschmidt echo can be mapped onto a CFT
correlation function. After computing this correlation
function, we Wick rotate back to real time to obtain the
dynamical echo. In imaginary time, the initial state can be
generated by an infinite imaginary time evolution
limτ→∞e−τH0 j0i ∝ jψ0i from arbitrary initial state j0i. In
imaginary time, expð−τHÞ acts as a projector onto the
ground state of H, so for large T ≫ tb, we essentially
oscillate between the ground states ofH0 andH1, for which
σz0 is locked in the direction of the boundary field �hb. In
the CFT language, a sharp change in boundary conditions
can be treated by inserting a boundary-condition changing
(BCC) operator [31], as diagrammed in Fig. 1. This means
that the Loschmidt echo LðNTÞ after N periods of drive

corresponds to the 2N-point correlation function of a BCC
operator ϕBCC, changing the boundary condition from fixed
σz0 ¼ �1 to σz0 ¼ ∓1.
Analytically continuing to real time, we expect the

Loschmidt echo to be a universal function LðT=tb; NÞ in
the field theory regime. In the limit T ≫ tb, this reduces to
the 2N-point function

LðNTÞ ∼
T≫tb

����
�Y2N−1

n¼0

ϕBCCðnT=2Þ
�����

2

¼ cN

�
T
tb

�
−γN

; ð3Þ

whose form is fixed by scale invariance. The universal
exponent γ ¼ 4hþ− ¼ 2 is given by the scaling dimension
hþ− ¼ 1

2
of the BCC operator ϕBCC [32,33]. Other step

drives can be dealt with in a similar fashion; for example,
a step drive from hb ¼ 0 to hb ≠ 0 corresponds to the
insertion of a BCC field with scaling dimension hBCC ¼ 1

16
.

We emphasize that Eq. (3) holds for arbitrary boundary step
drives in more general CFTs with the appropriate choice of
BCC operator.
Note that although the Loschmidt echo decays exponen-

tially with N, consistent with the independent quenches
picture, the fact that the quenches are not fully independent is
encoded in the nontrivial N dependence of the coefficients
cN . The ratio cN=ðc1ÞN is universal and can be computed
exactly for this specific drive since the BCC operator ϕBCC
corresponds to a chiral fermionic field ψ in the Ising field
theory, with the 2N-point correlator given by a Pfaffian:
LðNTÞ∼jhψð0ÞψðT=2ÞψðTÞ…ij2∼jPfð1=ðti−tjÞÞj2, with
ti ¼ 0; T=2; T;…; ðN − 1

2
ÞT. For step drives in general

CFTs, such universal ratios can be computed within the

FIG. 1. Slow driving regime ω ≪ t−1b ∼ h2b ≪ Λ for a step drive
alternating between−hb andþhb for systems up toL ∼ 3200 sites
(Γ ¼ 0). For large T, we see clear power-law scaling of the
Loschmidt echowith slope−2N as predicted from boundary CFT.
The agreement between the CFT 2N-point function prediction
(dashed lines) and numerical data is excellent, wherewe stress that
the only fit parameter is the nonuniversal offset c1. Note also the
universal collapse of the Loschmidt echo as a function of universal
parameter T=tb ∼ h2bT. Inset: sketch of the imaginary time picture
where the step drive corresponds to inserting BCC operators.
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Coulomb gas (bosonization) framework [48]. These ana-
lytical expressions are in excellent agreement with numerical
simulations for Γ ¼ 0 (Fig. 1), where the only nonuniversal
fit parameter is c1. Since these predictions rely solely on field
theory, they apply equally well to the nonintegrable case
Γ ≠ 0; the interactions Γσxi σxiþ1 are irrelevant in the RG
sense and, therefore, do not change the universality class. We
confirm this numerically by locating the new critical point
for Γ ≠ 0 using exact diagonalization, obtaining the ground
state using standard density matrix renormalization group
(DMRG) techniques [37,38], and simulating the dynamics of
this driven interacting chain using time-evolving block
decimation (TEBD) [50]. We find excellent agreement with
our field-theoretic argument, as shown in the Supplemental
Material [48].
Slow driving regime: general drives.—Consider now a

more general drive such as hbðt > 0Þ ¼ −hb cosðπt=TÞ,
with hbðt < 0Þ ¼ −hb. In the large T limit, hbðtÞ crosses
the critical value slowly rather than suddenly, yet the BCC
picture suggests that the field should quickly flow to
infinity. We find, however, that the vanishing (but finite)
crossing speed is strongly relevant, changing the power law
entirely (Fig. 2). To understand this difference, we use the
concept of Kibble-Zurek (KZ) scaling, which is frequently
applied to bulk drives crossing a bulk quantum critical point
[51–54] but has not been studied for such boundary drives
to our knowledge.
Let us imagine that the drive crosses hb ¼ 0 as a power

law hbðtÞ ¼ hbjt=TjrsgnðtÞ, with r ¼ 1 in the cosine drive
considered above and r ¼ 0 for a quench [55]. The
effective time scale tbðtÞ ∼ ½hbðtÞ�−νb now becomes time
dependent, and we expect the dynamics to be controlled by
an emergent time scale

tKZ ∼ Trνb=ð1þrνbÞh−νb=ð1þrνbÞ
b ; ð4Þ

given by tKZ ∼ tbðtKZÞ. Though our system is always
gapless so that there is no adiabatic limit, it is straightfor-
ward to show that this dynamical scale emerges directly
from the equations of motion of Eq. (2) [56]. It is natural to
expect that the slow driving limit T ≫ tKZ should still be
described by boundary CFT, suggesting that the Loschmidt
echo would scale as (3), with tb replaced by tKZ. We
therefore see that the effect of the slow driving amounts to
renormalizing the dimension hBCC of the BCC operator by
a factor αKZ ¼ 1=ð1þ rνbÞ, with νb ¼ 2 in our case. More
generally, for a drive where hbðtÞ crosses or touches the
critical value n times within a single cycle, we predict that
the universal exponent γ controlling the exponential decay
of the Loschmidt echo is given by

γ ¼ 2
Xn
i¼1

hiBCC
1þ riνb

; ð5Þ

where ri is the power of jhbðtÞj ∼ jt − ticjri near the critical
time tic. For our model, hiBCC ¼ 1

2
if hbðtÞ crosses zero and

hiBCC ¼ 1
16
if it touches zero without changing sign [31–33].

For example, a cosine or triangle drive oscillating between
�hb has n ¼ 2, r1 ¼ r2 ¼ 1 so that γ ¼ 2=3, while a
sawtooth drive combines slow (r1 ¼ 1) and fast (r2 ¼ 0)
crossings to give γ ¼ 4=3.
These predictions give good agreement with numerics

(Fig. 2) [57]. Furthermore, the only effect of the slow
driving is to renormalize the scaling dimensions of the BCC
operators while keeping the structure of the 2N-point
function unchanged. In particular, we find that the universal
numbers cN=ðc1ÞN in Eq. (3) are still given by the boundary
CFT predictions for a step drive [48].
Fast driving regime.—We now consider the high-

frequency regime t−1b ≪ Λ ≪ ω. This is naïvely outside
the regimewhere field theory results shouldapply, butwecan
take advantage of standard Floquet machinery to write a
Floquet-Magnus high-frequency expansion for the Floquet

Hamiltonian HF, defined by UðTÞ¼T e−i
R

T

0
dtHðtÞ ¼e−iTHF

[58]. For example, HF ¼ 1
2
ðH0 þH1Þ − ði=4ωÞ½H0; H1� þ

Oðω−2Þ for a step drive. While higher-order terms in this
expansion are suppressed by powers of ω−1 as for any high-
frequency Floquet system, we note here that the Floquet
Hamiltonian HF itself corresponds to a CFT subject to an
effective boundary field h̄b ¼ ð1=TÞ R T

0 hbðtÞdtwith higher-
order terms in the high-frequency expansion being RG
irrelevant. This is most easily seen using the field theory
Hamiltonian (2), where the small parameter controlling the
expansion is v=ω ≪ 1, with v ∼ Λ ¼ 2J. While the first
boundary term has scaling dimension Δ ¼ 1=2 and corre-
sponds to the averaged field h̄b, dimensional analysis
immediately implies that terms of order ω−n have scaling

FIG. 2. Loschmidt echo for Γ ¼ 0 over a single cycle (N ¼ 1)
in the slow regime for various drive geometries showing
renormalized power laws and universal collapse as a function
of T=tb ¼ Th2b. The dashed lines correspond to the analytic
prediction (5) from boundary CFT and KZ arguments. Inset: KZ
renormalization factor αKZ of the BCC exponents for a boundary
field scaling as hbðtÞ ¼ hbðt=TÞr compared to the KZ prediction
αKZ ¼ ð1þ νbrÞ−1, with νb ¼ 2. The dashed line is a fit of the
numerical data for small r giving νb ≈ 2.02� 0.08.
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dimensionof at leastnþ 1=2due to terms suchas∂nηð0Þ and
are thus irrelevant forn > 0 [48]. Therefore, at late times, the
system behaves as though subject to a single local quantum
quench, with effective boundary field h̄b (Fig. 3), a problem
whose universal dynamics has been studied extensively
[59,60]. We remark that though RG techniques may be, in
general, ill defined in a Floquet system which, for instance,
lacks a notion of ground state, in this high-frequency limit,
the Floquet evolution is well controlled by an effective static
Hamiltonian. Since our initial state is a conformally invariant
ground state and the effective Hamiltonian implements a
local quench, the notion of RG flow is well defined [59] and
provides a powerful tool of analysis. Additionally, for the
noninteracting (free fermions) casewithΓ ¼ 0 inEq. (1), one
may prove that the high-frequency expansion is convergent
for ω≳ Λ by bounding the spectral width of the single-
particle Hamiltonian [48]. More generally, this effective
single quench picture will survive even in the presence of
integrability-breaking interactions controlled by Γ up to
exponentially long time scales τth ∼ eCω=Λ [23–26]. We
simulated the dynamics of this interacting chain subject to
the same drive using TEBD and found excellent agreement
with the single effective quench picture even at moderate
frequencies (Fig. 3).
Crossover regime.—Finally, we discuss the intermediate

crossover regime t−1b ∼ ω ≪ Λ. We focus on a free-to-fixed
step drive from hb ¼ 0 to hb ≠ 0, with Γ ¼ 0 for simplicity.
In this regime, we expect the system to absorb energy
(“heat”) via resonant processes within the single-particle
bandwidth. This leads to exponential decay of the
Loschmidt echo

LðNTÞ ∼
t−1b ;ω≪Λ

e−N=N⋆ðωtbÞ; ð6Þ

with N⋆ðωtbÞ a universal function [Fig. 4(a)]. For a weak
drive (ωtb ≫ 1), resonant heating occurs with a rate
τ−1 ∼ h2b=J, given by Fermi’s golden rule, so that
N⋆ ∼ τ=T ∼ ωtb. For a strong drive (ωtb ≪ 1), we recover
the boundary CFT predictionN⋆ ∼ −1=ðγ logωtbÞ. We also
find that entanglement entropy of boundary intervals of size
l, relative to the ground state entropy, saturates to a volume
law behavior Sl ∼ l at long times in the regime ωtb ≫ 1,
consistent with heating [61]. At low frequencies, the entropy
simply oscillates between ground state values [63], though it
may become extensive at much later times. We leave a
detailed analysis of the role of interactions in this inter-
mediate regime for future work.
Discussion.—We have investigated CFTs subject to a

Floquet boundary drive. Despite the naïve expectation that
such gapless systems should absorb energy and simply heat
up, we have identified three distinct regimes, summarized in
Fig. 4(b), in which the system shows universal features that
can be understood using tools of field theory and scaling
theory. We expect our main conclusions to apply to a broad
class of systems, and it will be especially interesting to
investigate the consequences of our results for the physics of
driven quantum dots and the nonequilibrium signatures of
topological edgemodes [10]. Ingeneral, our results represent
an analytically tractablemodel of a driven gapless system, an
active area of research increasingly relevant to experiments.
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Floquet Hamiltonian HF (black crosses). This result also holds
when interactions are added with Γ ¼ 0.25 (white circles, green
line). Insets: entanglement entropy difference SlðtÞ − Slð0Þ for
Γ ¼ 0 as the drive frequency crosses over from the intermediate
to the fast regime.
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FIG. 4. Intermediate regime t−1b ∼ ω ≪ Λ for a step drive from
hb ¼ 0 to hb ≠ 0. (a) Left panel: universal scaling function
N⋆ðωtbÞ characterizing the exponential decay of the Loschmidt
echo LðNTÞ ∼ e−N=N⋆ , with the dashed line showing the linear
behavior expected from Fermi’s golden rule. Right panel:
volume-law scaling of the entanglement entropy in the long-
time limit for ωtb ¼ 10.5 ≫ 1. An overbar denotes the value of
the late-time plateau. (b) Sketch of the three universal driving
regimes analyzed in this Letter.
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