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We use a new approach to study the large fluctuations of a heavy-tailed system, where the standard large-
deviations principle does not apply. Large-deviations theory deals with tails of probability distributions and
the rare events of random processes, for example, spreading packets of particles. Mathematically, it
concerns the exponential falloff of the density of thin-tailed systems. Here we investigate the spatial density
PtðxÞ of laser-cooled atoms, where at intermediate length scales the shape is fat tailed. We focus on the rare
events beyond this range, which dominate important statistical properties of the system. Through a novel
friction mechanism induced by the laser fields, the density is explored with the recently proposed non-
normalized infinite-covariant density approach. The small and large fluctuations give rise to a bifractal
nature of the spreading packet. We derive general relations which extend our theory to a class of systems
with multifractal moments.
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In many diffusion processes, the concentration of par-
ticles starting at the origin spreads out like aGaussian,which
is fully characterized by the mean-squared displacement.
This results from the widely applicable Gaussian central
limit theorem (CLT) [1]. Many other physical systems are
described byLévy’sCLT (see, e.g., [2]). The latter dealswith
the sum of independent identically distributed random
variables whose own distribution is heavy tailed; as a result
it yields a density so broad that its variance diverges [3]. In
this Letter we study the spatial expansion of an atomic cloud
undergoing Sisyphus laser cooling [4,5]. Here the diffusion
switches between three statistical phases, depending on the
relative strength of the noiseversus the damping [6–8]. In the
Gaussian phase, which corresponds to deep optical lattices
(see below), small fluctuationsmean that the central shape of
the particle packet obeys the standard CLT. The Lévy phase
is dominated by rare large fluctuations and the particle
packet, not too far from the origin, is described by the Lévy
distribution [7,9]. In the heating phase, at shallow lattices,
fluctuations overcome the damping. Our focus is on the two
CLT phases.
In an experimental situation, e.g., [9], diverging moments

such as the infinite dispersion predicted by the LévyCLTare
unphysical because at finite times no particles traveling at
finite velocities can be found infinitely far from their origin.
The finiteness of all the moments requires that the fat tail of
the distribution be cut off beyond some point. A full
characterization of the system demands that this far asymp-
totic regime be captured correctly, beyond the intermediate
asymptotic power law of the Lévy density. This requires a
new theory for the large fluctuations of the system.
Similarly, the standard CLT may correctly predict the
variance of the system, as in the Gaussian phase of the
Sisyphus process, but completely fail in the description of
the rare events which determine higher moments.

In simple coin-tossing random walks (e.g., [10]) and
other processes (e.g., [11–13]) when the falloff of the
probability of the observable of interest is exponential, rare
fluctuations are often studied with large-deviations theory
[14]. Mathematically, this requires that the cumulant-
generating function be smooth. However, Lévy processes
[2,15,16] and other fat-tailed systems, where the decay rate
is a power law and cumulants may diverge, do not meet this
requirement [14]. We show, with the example of the
physically tunable system of cold atoms, that the recently
introduced infinite-covariant density (ICD) approach
[17,18], based on the moment- (as opposed to the cumu-
lant-) generating function, constitutes a superior option for
correctly handling heavy-tailed distributions. We discuss
the applicability of this approach and its results to a large
class of systems via universal relations.
Model.—In the semiclassical approximation, the trajec-

tory of a Sisyphus-cooled atom, starting at the origin
xð0Þ ¼ 0, with vð0Þ ¼ 0, is determined by the Langevin
equations [6] [see the Supplemental Material (SM) for a
more in-depth review [19]],

_vðtÞ ¼ F ðvÞ þ
ffiffiffiffiffiffiffi
2D

p
ΓðtÞ; _xðtÞ ¼ vðtÞ; ð1Þ

where F ðvÞ ¼ −v=ð1þ v2Þ is the deterministic cooling
force, in dimensionless units [17] (physical units in SM
[19]). Asymptotically, F ðvÞ ∼ −v when v ≪ 1 and F ðvÞ ∼
−1=v when v ≫ 1. ΓðtÞ is a Gaussian white noise with zero
mean and hΓðtÞΓðt0Þi ¼ δðt − t0Þ. D ¼ cER=U0, where U0

is the depth of the optical lattice, ER is the recoil energy,
and c ≈ 20 is a constant whose precise value is specific to
the type of atoms used in the experiment [5,6]. U0, and
hence D, may be tuned in the lab, and are the control
parameters of the system. Several anomalous statistical
predictions of this model, Eq. (1), both in and out of
equilibrium, have been confirmed in experiments [9,20,21].
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We wish to study the large fluctuations of the probability
density function (PDF) of the particles’ positions at time t,
PtðxÞ. Its Fourier transform,

R
∞
−∞ expðikxÞPtðxÞdx, from

x → k, is the moment-generating function [3]

P̂tðkÞ ¼ 1þ
X∞
m¼1

ðikÞ2m
ð2mÞ! hx

2mðtÞi: ð2Þ

The strategy we will employ is to derive the moments of the
process, hx2mðtÞi, for m ¼ 1; 2;… (odd moments are zero
by symmetry), perform the summation in Eq. (2) and invert
this function to obtain the density in x space. Naively, we
would expect a normalized density to emerge, but this, as
we will show, is not the case.
Scaling arguments for a non-normalizable state.—An

initial insight into PtðxÞ is gained as follows: Let Wtðx; vÞ
be the phase-space distribution of the particle packet, at
time t. Because for v ≫ 1 the friction vanishes as per
Eq. (1), in this case we expect a scaling v ∝ t1=2. By
integration over time, this implies x ∝ t3=2. Based on these
scaling arguments we may write Wtðx; vÞ ∼ t−ξfðx=t3=2;
v=t1=2Þ. To determine the exponent ξ we may first use a
simple argument (later we derive this rigorously): Note that
when D < 1 the marginal velocity equilibrium density is
[17,20,22–24]

lim
t→∞

PtðvÞ → PeqðvÞ ∼ jvj−1=D; ðwhen v ≫ 1Þ: ð3Þ

The heating phase, where D > 1, is left out of the context
of this Letter because an equilibrium state does not exist
there. By definition, this velocity density is related to the
phase-space distribution via

PeqðvÞ ¼ lim
t→∞

t−ξþ3=2

Z
∞

−∞
f

�
x

t3=2
;
v

t1=2

�
d

�
x

t3=2

�
: ð4Þ

Hence, from Eqs. (3) and (4) we find ξ ¼ 3=2þ 1=ð2DÞ.
Using this result, integration of the scaling solution over

dðv=t1=2Þ yields PtðxÞ ∼ IðzÞ=t1þ1=ð2DÞ, where z ¼ x=t3=2.
This suggests, and indeed our rigorous theory shows, that
there exists a limit such that

IðzÞ ¼ lim
t→∞

tβPtðxÞ; ð5Þ

where β ¼ 1þ 1=ð2DÞ. This limit is interesting because if
we integrate Eq. (5) over dz ¼ dðx=t3=2Þ, we get from the
normalization of PtðxÞ that the integral

R
∞
−∞ IðzÞdz → ∞.

Therefore, IðzÞ is not a normalized density, but rather a
scaling solution that captures the nonuniform convergence of
the particle packet. Given D < 1, the process is also
described by the Gaussian or Lévy CLT; however, as
mentioned earlier, this does not describe the rare fluctuations.
In this sense, the non-normalized state IðzÞ, being a limiting
solution, is complementary to the CLT. The scaling limit,
Eq. (5), can also be argued for from theKramers equation for
Wtðx; vÞ, see the SM [19]. Figure 1 presents simulation data

from the cold-atom system with D ¼ 0.4 [25], which
converges nicely with increasing time to the theory.
Excursions to untangle Langevin dynamics.—To derive

our main results we use a connection between the properties
of constrained stochastic paths and Langevin dynamics,
established in [6,26]. Let the times t1; t2;…; tn denote the
zero crossings of the stochastic process vðtÞ, Eq. (1). The
time intervals between the crossing events, τ1 ¼ t1 − 0;…,
τn ¼ tn − tn−1, are independent identically distributed
random variables, due to the Markovian Langevin process
under investigation. The total measurement time is
t ¼ P

n
i¼1 τi þ τ�, where τ� is the duration of the last interval,

in which the velocity does not return to zero. The displace-
ment accumulated during each step is χi ¼

R ti−1þτi
ti−1 vðtÞdt

[for the last step, χ� ¼ R
t
t−τ� vðtÞdt], and the final random

position of the particle at time t is xðtÞ ¼ P
n
i¼1 χi þ χ�. In

this construction, the velocity path in all but the last interval
starts and ends at zero, and is either strictly positive or
negative in between; hence, the τis are determined by the
first-passage time (to the velocity origin) distribution, gðτÞ,
where gðτÞ ≈ g�τ−3=2−1=ð2DÞ for large τ [17,26]. The slowly
decaying power-law tail of this function means that the last
step might be longer than all its predecessors combined, and
it cannot be neglected. This is a consequence of the weak
friction at large velocities, which allows for very long flights
without velocity zero crossings.
Each segment of the path vðtÞ, between zero crossings, is

approximated by a Bessel excursion in velocity space
[26,27] (see Fig. 2). An excursion in the time interval
½0; τi� is a stochastic trajectory constrained to begin close to
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FIG. 1. Convergence of the particles position density in
Sisyphus cooling, with D ¼ 0.4 (ν ¼ 7=6), to the form of the
ICD, Eq. (12). Langevin simulation results [25] are shown
for t ¼ 1000 (green left-pointing triangles), t ¼ 1778 (blue
up-pointing triangles), t ¼ 3162 (orange diamonds), t ¼ 5623
(purple squares), and t ¼ 10000 (red circles). The scaling limit
function IðzÞ, based on the areal PDFs of the Bessel excursion
and the meander, is presented by the solid black line. Asymptotic
theory for ðx=t3=2Þ≪1 (dot-dashed brown line) and ðx=t3=2Þ ≫ 1
(magenta dashed line) correspond to Eqs. (10) and (11), respec-
tively. Notice how IðzÞ diverges as x=t3=2 → 0 and that it is not
integrable at this pole.
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the velocity origin at vð0Þ ¼ ϵ → 0, end at vðτiÞ ¼ 0, and
never reach zero between ð0; τiÞ (see, e.g., [28–32]). The
area under the ith excursion is χi ∝ τ3=2i , which is naturally
correlated to its duration, because longer duration means
larger displacement. The last segment, where the velocity
path is not conditioned at its final point, is called a velocity
Bessel meander [26,33] (Fig. 2).
The term Bessel derives from the fact that for v ≫ 1,

Eq. (1) is related to the Bessel process, describing the radial
component of Brownian motion in arbitrary dimensions
[7,34–36]. Because we investigate the limit t ≫ 1, where
excursions and meanders are long, we use FðvÞ ¼ −1=v to
calculate the distribution of χ. Our case is equivalent to the
Bessel process in an effective fractional negative dimension
d ¼ 1�2=D (see the SM [19]). The statistics of χ and the
zero-crossing times, τ, determine the random position of the
particle, xðtÞ. Because the τs are independent and identically
distributed, the zero crossings form a renewal process
[26,37], which allows us to analyze the problem analytically
based on a generalization of the Montroll-Weiss equa-
tion [37,38]. Note that in a previous work [7], our original
presentation of this equation incorrectly ignored meanders,
which were introduced in our later publication [26].
In the SM [19], we find the following asymptotic

expression for the 2mth moment of the particles’ positions,
valid for m ≥ 1 at long times, in the range 1=5 < D < 1
(the range D < 1=5 is addressed below, and details on the
prefactor g�=hτi are provided in the SM):

hx2mðtÞi ∼ g�

hτi t
3m−3ν=2þ1

� hχ2miE
jð3m − 3ν=2Þð3m − 3ν=2þ 1Þj

þ 2hχ2miM
3νjð3m − 3ν=2þ 1Þj

�
; ð6Þ

where

ν ¼ 1

3D
þ 1

3
; ð2=3 < ν < 2Þ: ð7Þ

We denote by hχ2miE ¼ R
∞
−∞ χ2mBEðχÞdχ the 2mth

moment of the areal distribution of the Bessel excursion,
BEðχÞ, in the time interval [0, 1]. We denote by BMðχÞ and
hχ2miM the distribution and moment, respectively, of the
meander in the same time interval. Explicit expressions for
BEðχÞ and BMðχÞ are provided in the SM (which contains

also Ref. [39]) [19]. Note, importantly, that Eq. (6) does not
apply for m ¼ 0.
Non-normalizable limit function for the PDF.—Using

the long-time asymptotic moments provided in Eq. (6) in
the moment-generating function, Eq. (2), yields an approxi-
mation for P̂tðkÞ, which we denote as P̂A

t ðkÞ, valid at long
times,

P̂A
t ðkÞ¼ 1þ t−3ν=2þ1

X∞
m¼1

ð−1Þmg�ðkt3=2Þ2m
hτið2mÞ!

×

�Z
∞

−∞
χ2mBEðχÞdχ

�
1

3m−3ν=2
−

1

3m−3ν=2þ1

�

þ
Z

∞

−∞
χ2mBMðχÞdχ

2

3νð3m−3ν=2þ1Þ
�
: ð8Þ

Rearranging, and using the Taylor expansion cos ðω3=2yÞ ¼P∞
n¼0ð−1Þnðω3=2yÞ2n=ð2nÞ! for the summation, we obtain

P̂A
t ðkÞ ¼ 1þ g�t−3ν=2þ1

hτi
×
Z

∞

−∞
dχ

Z
1

0

dω½cosðω3=2kχt3=2Þ − 1�

×

�
BEðχÞ
ω3ν=2−1 þ

2BMðχÞ − 3νBEðχÞ
3νω3ν=2

�
: ð9Þ

Immediately below, taking the inverse-Fourier transform
from k → x, we drop the term proportional to δðxÞ because
this analysis applies only at large x. Calculating the integral
over ω, we now obtain the limit function IðzÞ in Eq. (5)
explicitly. When z ¼ x=t3=2 ≪ 1,

IðzÞ ≈ g�

3hτi hjχj
νiEjzj−ν−1; ð10Þ

where hjχjνiE is the νth absolute moment of the excursion
[27]. This equation means that IðzÞ is nonintegrable
around the origin. For z ≫ 1,

IðzÞ ≈ 4g�

9νhτi jzj
−ν−1=3

Z
∞

z
jχjν−2=3BMðχÞdχ: ð11Þ

Using the properties of BMðχÞ, in the SM we show that the
very far tail is Gaussian, IðzÞ ∝ exp½−3z2=ð4DÞ�, at
z → ∞ (in our previous work [7], this Gaussian decay
was observed from numerics) [19].
The function IðzÞ is the ICD of the spatial diffusion of

the cold atoms. For every z we find

IðzÞ ¼ 2g�

3hτi
1

jzjνþ1

�Z
∞

jzj
BEðχÞjχjνdχ þ jzj2=3

×
Z

∞

jzj

�
2

3ν
BMðχÞ − BEðχÞ

�
jχjν−2=3dχ

�
: ð12Þ

The term “infinite” means that it is non-normalizable,
despite being a limit function of the (obviously normalized)

FIG. 2. Left: A Bessel excursion in velocity space follows
_v ¼ −1=vþ ffiffiffiffiffiffiffi

2D
p

ΓðtÞ, with the path constrained to start at
vð0Þ ¼ ϵ and end at vðτÞ ¼ 0, and remain strictly positive in
the time interval ð0; τÞ. The random area under the path is χ.
Right: A velocity Bessel meander, with duration τ� and area χ�,
starts at vð0Þ ¼ ϵ and remains positive, while the final value vðτ�Þ
is random.
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PDF. “Covariant” means that it is a function of the scaled
variable x=t3=2. We obtained this non-normalizable solution
from the standard moment-generating function, Eq. (2),
because we summed over the long-time asymptotic approx-
imations of the moments, rather than their exact finite time
values. Equation (12) constitutes the long-time asymptotics
of the tail of the PDF, and in that sense it describes the rare
fluctuations of the system. Its asymptotic limits, Eqs. (10)
and (11) (also plotted in Fig. 1), are controlled exclusively
by the excursions for z ≪ 1 and the meander for z ≫ 1;
thus the far tail is described by a path that did not switch its
velocity direction for a duration of the order of measure-
ment time. This is clearly a rare event.
The ICD, IðzÞ, Eq. (12), gives the long-time limit of all

the absolute integer and fractional moments hjxjqi of order
q > ν. This also includes the second moment, generally
used in experiments as a characterization of the diffusion
process. Looking back at Eq. (6), the mean-squared
displacement, which is sensitive to the large fluctuations
and the tails of the PDF, is obtained via hx2ðtÞi ¼
t4−3ν=2hz2iI , where hz2iI ¼ R∞

−∞ z2IðzÞdz. For every
q ∈ R, if IðzÞ [Eq. (12)] is integrable with respect to
jzjq, then the ICD determines hjxjqðtÞi (i.e., the qth absolute
moment [40]) via hjxjqðtÞi ¼ t3q=2−3ν=2þ1hjzjqiI , where
hjzjqiI ¼ R

∞
−∞ jzjqIðzÞdz.

When q ≤ ν, IðzÞ is nonintegrable with respect to the
observable jzjq and small absolute moments that are less
sensitive to large fluctuations are given by the Lévy
distribution, Lνð·Þ, as found in [7]. For this CLT result
the effect of the meander is irrelevant; further details are
provided in the SM [19]. This second long-time limit
function has the scaling shape ðKνtÞ−1=νLν½x=ðKνtÞ1=ν�,
where Kν is a constant (see the SM for more information
[19]) [7,26]. For all the absolute moments we find the
biscaling behavior

hjxjqðtÞi ∝
�
tq=ν q < ν

t3q=2−3ν=2þ1 q > ν
: ð13Þ

Such multifractality is known as strong anomalous diffu-
sion [41]. It represents the multiscaling nature of the
underlying PDF. Note that as q → ν from above, the
coefficient of hjxjqi, given by the analytic continuation
of Eq. (6), diverges. The same happens when evaluating the
moments using the Lévy scaling function, approaching ν
from below.
The derivation of IðzÞ, Eq. (12), was performed in the

range of D where the variance is provided by the ICD.
However, the scaling arguments at the beginningof this Letter
suggest that such a function should be found whenever the
power-law equilibrium state in velocity space, Eq. (3), exists
—namely, for all 0 < D < 1. In the range 0 < D < 1=5 one
will find that hx2i ∝ t and the central part of the spreading
packet is Gaussian. But even in this Gaussian regime,

standard large-deviations theory does not apply; instead,
the ICD given by Eqs. (5) and (12) ensures the finiteness of
large moments, beyond the mean-squared displacement.
Generality of the infinite-covariant density approach.—

ICDs may be naturally related to multifractality (physical
examples provided below). In particular we now derive a
general relation between exponents describing the bifractal
moments, the central part of the packet (with bulk fluctua-
tions described by the Lévy CLT), and the exponents
describing the ICD. When absolute moments of order
q > qc, where qc > 0 defines some critical moment, scale
faster in time than smaller ones, a scaling function Ið~z ¼
x=tαÞ may describe the large fluctuations at long times via
hjxjqðtÞi → tqα−βþα

R∞
−∞ j~zjqIð~zÞd~z (β > α > 0). These

absolute moments and exponents should be obtained
specifically for any given model or system, for example,
using experimental data. In this case, one will find that
Ið~zÞ ¼ limt→∞tβPtðxÞ, where PtðxÞ is the normalized PDF.
This limit function is, hence, a non-normalizable ICD
[since obviously hx0ðtÞi ¼ 1, then

R
∞
−∞ Ið~zÞd~z → ∞]. If

around the origin the PDF is represented by the Lévy
distribution [42] t−1=νLνðx=t1=νÞ (for arbitrary 0 < ν < 2,
not necessarily related to D), one will find (by “stitching”
this limit function and the ICD at a central region of x, as in
[18], see the SM [19]) the following relation between the
scaling exponents: α − β þ αν ¼ 1. In [43], for example,
the authors study a nonlinearly coupled continuous-time
random walk with ðα; βÞ ¼ ðα;αþ β − 1Þ, which accord-
ing to our analysis yields ν ¼ β=α (α, β, in bold, refer to the
parameters in this reference). Our prediction is consistent
with their results. A more general relation links the
exponents α, β of the ICD and the central power-law
where x ∼ t1=ν to the critical moment of the biscaling, qc, as
follows: α − β þ qcα ¼ qc=ν. This is consistent, e.g., with
the exponents found for transport on two-dimensional Lévy
quasicrystals, studied in [44]. The agreement with [43,44]
suggests an ICD in these systems as well.
The moment-generating function is a natural tool for

deriving the ICD for many processes, e.g., random walks
with multiplicative noise [45]. While nonanalytical behav-
ior of the moments raises a red flag for standard large-
deviations theory, it argues for the use of the ICD approach
as the appropriate theory for the large fluctuations. Finding
this function is crucial for characterizing the rare events.
The limit law given by the ICD in Eq. (5) for the rescaled
PDF replaces the large-deviations principle, according
to which the falloff of the tails in thin-tailed systems
is controlled by the rate function Qðx=tÞ, where
Qðx=tÞ ¼ limt→∞ ln ½PtðxÞ�=t.
Discussion.—CLTs play an important role in statistical

physics, but of no less importance may be the proper
characterization of the deviations from them. The ICD was
previously found, e.g., for Lévy walks [18,46]. Because
dual scaling of the moments and fat-tailed distributions are
very common, we speculate that ICDs will describe a large
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class of systems, e.g., Lévy glasses [47], fluctuating
surfaces [48], motion of tracer particles in the cell [49].
and diffusion on lipid bilayers [50]. To identify the ICDs in
these diverse systems requires further work. The Sisyphus-
cooled atoms system is special because it allows us, by
tuning the intensity of the lasers, to find regimes where
large fluctuations in the tails are non-negligible. Our ICD
solves the serious problem of the diverging variance
expected by the Lévy distribution in this system; however,
the latter insures the normalizability of the PDF. A full
description of the system requires both functions.
Generally, the ICD may depend on the protocol of the

preparation of the system. Its shape may change if, prior to
measurement, the particles are relaxed by interacting with
the lasers in a spatial trap for some time t�, where t� ≫ t.
Our results apply in the opposite limit. The dependence on
t� leads to transport that depends on the preparation time.
Dechant and Lutz found theoretically not biscaling, but
triscaling of the moments in this case [8]. Finally, we point
out that the function fðz; ~vÞ (where ~v ¼ v=t1=2) in Eq. (4) is
itself an ICD, as it is clearly not normalizable. Elucidating
its properties is an important future goal.
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Foundation.

*Corresponding author.
ErezAgh5@gmail.com

[1] C. Gardiner, Stochastic Methods (Springer, Berlin, 2009).
[2] V. Zaburdaev, S. Denisov, and J. Klafter, Lévy walks, Rev.

Mod. Phys. 87, 483 (2015).
[3] J. Klafter and I. M. Sokolov, First Steps in Random Walks:

From Tools to Applications (Oxford University Press,
New York, 2011).

[4] J. Dalibard and C. Cohen-Tannoudji, Laser cooling below
the Doppler limit by polarization gradients: simple theo-
retical models, J. Opt. Soc. Am. B 6, 2023 (1989).

[5] C. Cohen-Tannoudji and W. D. Phillips, New mechanisms
for laser cooling, Phys. Today 43, No. 10, 33 (1990).

[6] S. Marksteiner, K. Ellinger, and P. Zoller, Anomalous
diffusion and Lévy walks in optical lattices, Phys. Rev. A
53, 3409 (1996).

[7] D. A. Kessler and E. Barkai, Theory of Fractional Lévy
Kinetics for Cold Atoms Diffusing in Optical Lattices,
Phys. Rev. Lett. 108, 230602 (2012).

[8] A. Dechant and E. Lutz, Anomalous Spatial Diffusion and
Multifractality in Optical Lattices, Phys. Rev. Lett. 108,
230601 (2012).

[9] Y. Sagi, M. Brook, I. Almog, and N. Davidson, Observation
of Anomalous Diffusion and Fractional Self-Similarity in
One Dimension, Phys. Rev. Lett. 108, 093002 (2012).

[10] R. S. Ellis, The theory of large deviations: from Boltzmann’s
1877 calculation to equilibrium macrostates in 2d turbu-
lence, Physica (Amsterdam) 133D, 106 (1999).

[11] P. L. Krapivsky, K. Mallick, and T. Sadhu, Large Deviations
in Single-File Diffusion, Phys. Rev. Lett. 113, 078101
(2014).

[12] B. Meerson, E. Katzav, and A. Vilenkin, Large Deviations
of Surface Height in the Kardar-Parisi-Zhang Equation,
Phys. Rev. Lett. 116, 070601 (2016).

[13] C. Hegde, S. Sabhapandit, and A. Dhar, Universal Large
Deviations for the Tagged Particle in Single-File Motion,
Phys. Rev. Lett. 113, 120601 (2014).

[14] H. Touchette, The large deviation approach to statistical
mechanics, Phys. Rep. 478, 1 (2009).

[15] J. P. Bouchaud and A. Georges, Anomalous diffusion in
disordered media: statistical mechanisms, models and
physical applications, Phys. Rep. 195, 127 (1990).

[16] J. Klafter, M. F. Shlesinger, and G. Zumofen, Beyond
brownian motion, Phys. Today 49, No. 2, 33 (1996).

[17] D. A. Kessler and E. Barkai, Infinite Covariant Density for
Diffusion in Logarithmic Potentials and Optical Lattices,
Phys. Rev. Lett. 105, 120602 (2010).

[18] A. Rebenshtok, S. Denisov, P. Hänggi, and E. Barkai, Non-
Normalizable Densities in Strong Anomalous Diffusion:
Beyond the Central Limit Theorem, Phys. Rev. Lett. 112,
110601 (2014).

[19] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.118.260601 for a
physical description of the Sisyphus system, and detailed
calculations.

[20] P. Douglas, S. Bergamini, and F. Renzoni, Tunable Tsallis
Distributions in Dissipative Optical Lattices, Phys. Rev.
Lett. 96, 110601 (2006).

[21] H. Katori, S. Schlipf, and H. Walther, Anomalous Dynamics
of a Single Ion in an Optical Lattice, Phys. Rev. Lett. 79,
2221 (1997).

[22] E. Lutz, Power-law tail distributions and nonergodicity,
Phys. Rev. Lett. 93, 190602 (2004).

[23] P. C. Holz, A. Dechant, and E. Lutz, Infinite density for cold
atoms in shallow optical lattices, Europhys. Lett. 109, 23001
(2015).

[24] A. Dechant, S. T. Shafier, D. A. Kessler, and E. Barkai,
Heavy-tailed phase-space distributions beyond boltzmann-
gibbs: Confined laser-cooled atoms in a nonthermal state,
Phys. Rev. E 94, 022151 (2016).

[25] Simulations were performed using the standard Euler-
Mayurama integration [1] of Eq. (1) with a step size of
Δt ¼ 0.01, for 105 particles.

[26] E. Barkai, E. Aghion, and D. A. Kessler, From the Area
Under the Bessel Excursion to Anomalous Diffusion of
Cold Atoms, Phys. Rev. X 4, 021036 (2014).

[27] D. A. Kessler, S. Medalion, and E. Barkai, The distribution
of the area under a Bessel excursion and its moments, J. Stat.
Phys. 156, 686 (2014).

[28] G. Louchard, Kac’s formula, Lévy’s local time and
Brownian excursion, J. Appl. Probab., 21, 479 (1984).

[29] J. Pitman, Brownian motion, bridge, excursion, and
meander characterized by sampling at independent uniform
times, Electron. J. Pro 4, 1 (1999).

[30] S. Janson, Brownian excursion area, Wright’s constants in
graph enumeration, and other brownian areas, Probab. Surv.
4, 80 (2007).

[31] S. N. Majumdar and A. Comtet, Airy distribution function:
from the area under a Brownian excursion to the maximal
height of fluctuating interfaces, J. Stat. Phys. 119, 777 (2005).

PRL 118, 260601 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
30 JUNE 2017

260601-5

https://doi.org/10.1103/RevModPhys.87.483
https://doi.org/10.1103/RevModPhys.87.483
https://doi.org/10.1364/JOSAB.6.002023
https://doi.org/10.1063/1.881239
https://doi.org/10.1103/PhysRevA.53.3409
https://doi.org/10.1103/PhysRevA.53.3409
https://doi.org/10.1103/PhysRevLett.108.230602
https://doi.org/10.1103/PhysRevLett.108.230601
https://doi.org/10.1103/PhysRevLett.108.230601
https://doi.org/10.1103/PhysRevLett.108.093002
https://doi.org/10.1016/S0167-2789(99)00101-3
https://doi.org/10.1103/PhysRevLett.113.078101
https://doi.org/10.1103/PhysRevLett.113.078101
https://doi.org/10.1103/PhysRevLett.116.070601
https://doi.org/10.1103/PhysRevLett.113.120601
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1016/0370-1573(90)90099-N
https://doi.org/10.1063/1.881487
https://doi.org/10.1103/PhysRevLett.105.120602
https://doi.org/10.1103/PhysRevLett.112.110601
https://doi.org/10.1103/PhysRevLett.112.110601
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.260601
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.260601
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.260601
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.260601
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.260601
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.260601
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.260601
https://doi.org/10.1103/PhysRevLett.96.110601
https://doi.org/10.1103/PhysRevLett.96.110601
https://doi.org/10.1103/PhysRevLett.79.2221
https://doi.org/10.1103/PhysRevLett.79.2221
https://doi.org/10.1103/PhysRevLett.93.190602
https://doi.org/10.1209/0295-5075/109/23001
https://doi.org/10.1209/0295-5075/109/23001
https://doi.org/10.1103/PhysRevE.94.022151
https://doi.org/10.1103/PhysRevX.4.021036
https://doi.org/10.1007/s10955-014-1032-9
https://doi.org/10.1007/s10955-014-1032-9
https://doi.org/10.1017/S0021900200028692
https://doi.org/10.1214/EJP.v4-48
https://doi.org/10.1214/07-PS104
https://doi.org/10.1214/07-PS104
https://doi.org/10.1007/s10955-005-3022-4


[32] S. N. Majumdar and H. Orland, Effective langevin equations
for constrained stochastic processes, J. Stat. Mech. (2015)
P06039.

[33] R. T. Durrett, D. L. Iglehart, and D. R. Miller, Weak con-
vergence to Brownian meander and Brownian excursion,
Ann. Probab., 5, 117 (1977).

[34] G. Schehr and P. Le Doussal, Extreme value statistics from
the real space renormalization group: Brownian motion,
bessel processes and continuous time random walks, J. Stat.
Mech. (2010) P01009.

[35] E. Martin, U. Behn, and G. Germano, First-passage and
first-exit times of a Bessel-like stochastic process, Phys.
Rev. E 83, 051115 (2011).

[36] F. Font-Clos and N. R. Moloney, Percolation on trees as a
brownian excursion: from gaussian to kolmogorov-smirnov
to exponential statistics, Phys. Rev. E 94, 030102 (2016).

[37] E.W. Montroll and G. H. Weiss, Random walks on lattices.
ii, J. Math. Phys. (N.Y.) 6, 167 (1965).

[38] R. Metzler and J. Klafter, The random walk’s guide to
anomalous diffusion: a fractional dynamics approach, Phys.
Rep. 339, 1 (2000).

[39] M. Abramowitz and I. A. Stegun, Handbook of Mathemati-
cal Functions: With Formulas, Graphs, and Mathematical
Tables (Courier Dover Publications, New York, 1972).

[40] Equation (6) is analytically continued to absolute odd and
fractional moments hjxjqi, for ν < q ∈ R, by replacing
2m → q and using hjχjqiE and hjχjqiM.

[41] P. Castiglione, A. Mazzino, P. Muratore-Ginanneschi, and
A. Vulpiani, On strong anomalous diffusion, Physica
(Amsterdam) 134D, 75 (1999).

[42] J. Klafter and G. Zumofen, Lévy statistics in a Hamiltonian
system, Phys. Rev. E 49, 4873 (1994).

[43] M. Dentz, T. Le Borgne, D. R. Lester, and F. P. J. de Barros,
Scaling forms of particle densities for lévy walks and
strong anomalous diffusion, Phys. Rev. E 92, 032128
(2015).

[44] P. Buonsante, R. Burioni, and A. Vezzani, Transport and
scaling in quenched two-and three-dimensional lévy qua-
sicrystals, Phys. Rev. E 84, 021105 (2011).

[45] I. Lubashevsky, Equivalent continuous and discrete realiza-
tions of lévy flights: A model of one-dimensional motion of
an inertial particle, Physica (Amsterdam) 392A, 2323
(2013).

[46] A. Rebenshtok, S. Denisov, P. Hänggi, and E. Barkai,
Infinite densities for Lévy walks, Phys. Rev. E 90,
062135 (2014).

[47] P. Bernabó, R. Burioni, S. Lepri, and A. Vezzani, Anoma-
lous transmission and drifts in one-dimensional lévy
structures, Chaos Solitons Fractals 67, 11 (2014).

[48] A. L. Zamorategui, V. Lecomte, and A. B. Kolton, Distri-
bution of zeros in the rough geometry of fluctuating
interfaces, Phys. Rev. E 93, 042118 (2016).

[49] N. Gal and D. Weihs, Experimental evidence of strong
anomalous diffusion in living cells, Phys. Rev. E 81, 020903
(2010).

[50] D. Krapf, G. Campagnola, K. Nepal, and O. B. Peersen,
Strange kinetics of bulk-mediated diffusion on lipid
bilayers, Phys. Chem. Chem. Phys. 18, 12633 (2016).

PRL 118, 260601 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
30 JUNE 2017

260601-6

https://doi.org/10.1088/1742-5468/2015/06/P06039
https://doi.org/10.1088/1742-5468/2015/06/P06039
https://doi.org/10.1214/aop/1176995895
https://doi.org/10.1088/1742-5468/2010/01/P01009
https://doi.org/10.1088/1742-5468/2010/01/P01009
https://doi.org/10.1103/PhysRevE.83.051115
https://doi.org/10.1103/PhysRevE.83.051115
https://doi.org/10.1103/PhysRevE.94.030102
https://doi.org/10.1063/1.1704269
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1016/S0167-2789(99)00031-7
https://doi.org/10.1016/S0167-2789(99)00031-7
https://doi.org/10.1103/PhysRevE.49.4873
https://doi.org/10.1103/PhysRevE.92.032128
https://doi.org/10.1103/PhysRevE.92.032128
https://doi.org/10.1103/PhysRevE.84.021105
https://doi.org/10.1016/j.physa.2013.01.061
https://doi.org/10.1016/j.physa.2013.01.061
https://doi.org/10.1103/PhysRevE.90.062135
https://doi.org/10.1103/PhysRevE.90.062135
https://doi.org/10.1016/j.chaos.2014.06.002
https://doi.org/10.1103/PhysRevE.93.042118
https://doi.org/10.1103/PhysRevE.81.020903
https://doi.org/10.1103/PhysRevE.81.020903
https://doi.org/10.1039/C6CP00937A

