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Learning a task induces connectivity changes in neural circuits, thereby changing their dynamics. To
elucidate task-related neural dynamics, we study trained recurrent neural networks. We develop a mean field
theory for reservoir computing networks trained to have multiple fixed point attractors. Our main result is that
the dynamics of the network’s output in the vicinity of attractors is governed by a low-order linear ordinary
differential equation. The stability of the resulting equation can be assessed, predicting training success or
failure. As a consequence, networks of rectified linear units and of sigmoidal nonlinearities are shown to have
diametrically different properties when it comes to learning attractors. Furthermore, a characteristic time
constant, which remains finite at the edge of chaos, offers an explanation of the network’s output robustness in
the presence of variability of the internal neural dynamics. Finally, the proposed theory predicts state-
dependent frequency selectivity in the network response.
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Task learning is considered the raison d’etre of recurrent
neural networks (RNNs), studied in the context of neuro-
science and machine learning [1,2]. Yet, a theoretical
understanding of trained RNN dynamics is lacking, with
most of the existing physics literature addressing either
random networks [3–7], designed networks [8–10], or a
designed control setting [11–13].
In this Letter, we advance a theory of trained RNN

dynamics. We consider an initially random, chaotic net-
work whose output is trained to produce several target
values and then fed back to the network, yielding multiple
fixed point attractors. This setting underlies complex tasks
that were analyzed phenomenologically using rate models
[1,14,15] and are the subjects of attempts [16] to extend
to more realistic task performing networks [17]. Using a
mean field analysis, we derive the effect of training on the
output dynamics in the vicinity of the training targets. The
resulting dynamics are qualitatively different from those
induced by a random modification of the same form and
magnitude as induced by training [18]. The stability, which
is a critical property for such training [19], is then assessed,
showing that training success depends on the network’s
nonlinearity. Next, we show that multiple training targets
can lead to state-specific frequency selectivity, as observed
in task-adapted biological neuronal circuits [20,21].
Finally, the settling time of an output of a perturbed
RNN is shown to remain finite at the edge of the chaos,
contrary to the varying internal state dynamics [22,23], for
which the settling time is known to diverge [3].
Model and training protocol.—Reservoir computing

[24,25] is a popular and simple paradigm for training
RNNs. A network of neurons with random recurrent
connectivity (referred to as the reservoir) is equipped with
readout weights trained to produce a desired output while

keeping the rest of the connectivity fixed. The dynamics
[3–5,26] are given by

_x ¼ −xþWrþ wFBzþ winu ð1Þ
with state x ∈ RN representing the synaptic input and the
firing rate given by rðtÞ ¼ ϕ(xðtÞ), where ϕðxÞ is an
elementwise nonlinear function of x, commonly set to
ϕðxÞ ¼ tanhðxÞ. Output z ¼ wT

outrðtÞ and input uðtÞ are fed
into the network via weight vectors wFBðrespectively;
winÞ ∈ RN with elements independent identically distrib-
uted. Elements of the connectivity matrix W ∈ RN×N are
independent identically distributed as Wij ∼N ð0; g2N−1Þ
with g being a gain parameter.
The goal of the training process is to have the output

zðtÞ approximate some predefined target function fðtÞ. In
the echo state training method [25], one breaks the readout-
feedback loop, creating an auxiliary open loop system
defined as

_x ¼ −xþWrþ wFBf þ winu; ð2Þ
in which the target function fðtÞ, rather than the readout
zðtÞ ¼ wT

outrðtÞ, is injected via the feedback weights wFB.
If this open loop system is globally stable, linear regression
can be used to find wout so that zOL ¼ wT

outr ≈ f, which
becomes exact for large networks. While open loop
stability, known as the fading memory property, is assumed
in both echo state and first-order reduced and controlled
error training [25–27], the Achilles heel of the training
procedure is the subsequent transition back to the closed
loop dynamics (1). Here instability can arise and a variety
of other phenomena may emerge. Fortunately, the random-
ness of the internal connections and their intactness during
the training enable a detailed analysis of the trained
network as reported in what follows.
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Dynamics of a trained network.—Here, we assume
zero input (u≡ 0) and train the network to have M ≪ N
fixed points of (1), corresponding to constant output levels
z ∈ fA1;…; AMg with respective solutions x̄1;…; x̄M and
rates r̄1;…; r̄M.
For a given target fðtÞ≡ A, fading memory implies

that the open loop system (2) converges to a unique stable
state x̄, given by

x̄ ¼ Wϕðx̄Þ þ wFBA; ð3Þ
and that the spectral radius ρ of the linearized open loop
dynamics WR0, given by ρ2 ¼ g2hr02i [7,18], is smaller
than one. Here R0

ij ¼ δijr0i with r0 ¼ ϕ0ðx̄Þ ¼ ðdϕ=dxÞjx¼x̄

is a diagonal matrix of linearized rate functions. The
average h:i is taken over neurons and by the mean field
theory (MFT) assumption equals the ensemble average
over realizations of W.
Importantly, asymptotic stability of the open loop system

(2) does not guarantee stability of the closed loop system
(1). This can be understood by considering the linearization
of the latter:

δ_x ¼ ½−I þ ðW þ wFBwT
outÞR0�δx: ð4Þ

For large N, the resulting spectrum consists of a disklike
spectral density region of radius ρ associated with WR0 as
in the open loop system and other eigenvalues related to the
feedback loop term wFBwT

out. We will show that exactly M
eigenvalues correspond to the latter and that their loci
can fall either inside or outside the spectral density disk.
Figure 1 shows how these loci determine the stability,
convergence times, and oscillations for networks that
comply with fading memory.
We will derive these eigenvalues of the closed loop

system by analyzing the open loop gain—the response of
the open loop output to a small perturbation in the drive
f ¼ Aþ δfðtÞ. In the Fourier domain, the state perturba-
tion XðωÞ is given by

iωXðωÞ ¼ −XðωÞ þWR0XðωÞ þ wFBFðωÞ; ð5Þ
leading to the open loop gain:

GOLðωÞ ¼ Z½ωjFðωÞ≡ 1� ¼ wT
outR0X½ωjFðωÞ≡ 1�: ð6Þ

Poles of (6) correspond to the spectrum of the linearized
open loop system, and we thus expect N poles. We will
show, however, that the mean field estimate for (6) is of the
order M ≪ N. This fact should be interpreted as a lack
of observability [32] of all except M linear modes of the
network. Algebraically, it means that N −M out of the N
poles ofGOLðωÞ are canceled by zeros. Consequently, since
the closed loop gain is given by

GCLðωÞ ¼ GOLðωÞ½1 −GOLðωÞ�−1; ð7Þ
only loci of M eigenvalues are updated when closing the
loop, while the rest of the spectrum remains unchanged.

This finding is far from being obvious a priori: Closing
the loop is equivalent to a rank one perturbation wFBwT

out in
(4). On the one hand, such a perturbation with an appro-
priately chosen wout could, in principle, arbitrarily modify all
the eigenvalues of the spectrum [27]. On the other hand, for a
case of wout independent of the initial connectivity matrixW,
only one eigenvalue will change, as follows from a formula
for spectral density devised in Ref. [18].
Single training target.—We estimate GOLðωÞ for

N → ∞ and M ¼ 1 using second-order statistics of x̄
and X. Following the notation in Ref. [4], we denote the
deterministic (independent of W) part of the solution x̄
of (3) by x̄0 and the stochastic one by x̄1. Namely, we have
x̄0 ¼ wFBA and x̄1 ¼ Wϕðx̄Þ with elements x̄1i distributed
as x̄1i ∼N ð0; σ2Þ. Variance σ2 of an individual element of
the state vector can be obtained self-consistently, according
to σ2 ¼ g2hϕ2ðwFBAþ σyÞi with y being a zero mean unit
variance Gaussian variable.
The solution X of (5) is represented similarly to the state

vector x̄ but with the stochastic part X1 further decomposed
into X1

∥ and X1⊥. Defined by X1
∥ ¼ αðωÞx̄1 and hX1⊥x̄1i≡ 0,

these components correspond to the response of internal units
to external perturbations in a direction that is parallel, and
respectively orthogonal, to the state x̄1. Beyond the technical
aspect in the MFT derivation, it is instructive to consider this
decomposition in relation to network dynamics. The case of
jX1

∥j ≪ jX1⊥j leads to a time scale difference between output
and internal dynamics, which is discussed below Eq. (9).
Furthermore, the subspace orthogonal to x̄1, of whichX1⊥ is a
member, can be used by adaptive algorithms [26] for
improving the stability of training targets that are unstable
with the least mean square readout used in this work.
From Eqs. (3) and (5), the correlation between x̄1 and X1

can be obtained, leading to a linear equation for αðωÞ.
Realizing that the readout vector wout in the case of M ¼ 1
is simply the vector r̄, normalized and scaled by the desired
output amplitude, we obtain the open loop gain as a mean
field estimate of hrr0Xi:

GOLðωÞ ¼ Aβ0
ð1 − β1 þ iωÞ ð8Þ

with frequency-independent coefficients β0;1 derived in
Ref. [27]. The derivation of (8) required neglecting X1⊥ due
to the following argument: The vectors x̄1 ¼ Wr̄ and X1 ¼
ð1þ iωÞ−1WR0X both result from a product withW and are
thus jointly Gaussian. Orthogonality to x̄1 thus renders the
vector X1⊥ independent of x̄1 and of all its functions.
The single pole of (8) leads to a single (uncanceled) pole

λout ¼ −ð1 − Aβ0 − β1Þ of the closed loop gain (7) and
corresponds to a single eigenvalue of (4). The rest of its
spectrum, corresponding to canceled poles, remains intact

compared to the open loop system [Figs. 1(a)–1(c)].
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Interestingly, for a commonly used ϕðxÞ ¼ tanhðxÞ and,
more generally, for any sigmoidal activation function ϕðxÞ
with an inflection point at zero, the pole λout is always
negative and the trained system is thus always stable.
Conversely, it is always unstable for a rectified linear
activation function ϕðxÞ ¼ maxð0; x − xthÞ with positive
threshold xth. To check, one expresses λout as

λout ¼ −σ−2g2hϕðx0Þ½ϕðx0Þ − x0ϕ0ðx0Þ�i ð9Þ

where x0 ¼ wFBAþ σy, and observes that the integrand is
always non-negative (respectively, nonpositive) for an
origin-centered sigmoid (respectively, rectified linear) acti-
vation function. The situation with all positive but satu-
rating activation functions (e.g., those investigated in

FIG. 1. The analysis of a trained RNN is shown for representative cases compliant with the fading memory property (ρ < 1).
(a) Internal dynamics are slow compared to network output (τnet > τout). (b) The opposite case (τnet < τout), where the internal state is
dominated by output feedback. (c) Unstable case (τout < 0). (d) Unstable oscillatory solution around one of the targets forM ¼ 3. Left:
Mean field estimate (red) of the closed loop spectrum compared with a finite size realization (blue dots, N ¼ 3000). Middle: A transient
response for a δ-like perturbation is shown for both output (thick line) and for ten random neurons (thin lines). Right: A MFT estimation
(red) of open loop gain is compared with a finite size realization (blue). The black cross at 1þ 0i helps visualize the Nyquist criterion.
(a) inset: Finite size effects (for other cases, where ρ is significantly smaller than unity, finite size effects are small and not shown).
Parameters: The output value was set to A ¼ 1 for all the cases except (d), where A1;2;3 ¼ f0.5; 1.0; 1.5g (inset) and A1 is analyzed.
Nonlinearity ϕðxÞ ¼ tanhðxÞ was used except (c), for which ϕðxÞ ¼ maxð0; x − 0.1Þ. The connectivity strength scale g was set to 1.5,
0.5, 1.1, and 1.0 for the cases (a), (b), (c), and (d), respectively.
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Ref. [33]) is more complicated, and both stable and
unstable settings exist.
The maximum Lyapunov exponent of the system (1)

does not necessarily coincide with λout but rather with
maxðλout; ρ − 1Þ. In particular, for sigmoids mentioned
above, τout ≡ −ðλoutÞ−1 remains finite even for networks
at the edge of chaos, where, by definition, the time constant
of the internal activity diverges as τnet ¼ ð1 − ρÞ−1 [3,18].
The case of τnet ≫ τout is demonstrated in Fig. 1(a) and can
explain the experimental observation [22,23] of the robust-
ness of functionally important signals in the presence of
highly varying underlying neural activity. From this point
of view, the convergence of GOLðωÞ to its MFT estimate as
shown in Fig. 1(a) (inset) can be interpreted as the subspace
X⊥ becoming unobservable from the output.
Multiple training targets.—For M ¼ 1 the open loop

gain (8) has a single pole, which implies that a dc gain
smaller than unity [GOLðω ¼ 0Þ < 1] is a sufficient and
necessary condition for the stability of (1). This is not the
case for M > 1. The least mean square readout weight
vector in this case is given by

wout ¼ N−1
XM

m¼1

kmr̄m; ð10Þ

where the coefficient vector k is derived from the corre-
lation matrix of the states r̄. The open loop gain around the
nth fixed point is hence

GOL
n ðωÞ ¼

XM

m¼1

kmGnmðωÞ ð11Þ

with a diagonal term Gnn similar to (8) and cross terms
GnmðωÞ ¼ hr̄TmR0

nXnðωÞi which can be brought to a form

GnmðωÞ ¼
Knmðiω − znmÞ

ðiω − pnnÞðiω − pnmÞ
ð12Þ

with Knm, znm, pnm, and pnn derived in Ref. [27]. Thus, we
conclude that the local dynamics of the output of the closed
loop system (7) is governed by an Mth-order ordinary
differential equation. This follows from noting that the sum
of Eq. (11) renders GOL

n ðωÞ and GCL
n ðωÞMth-order rational

functions of ω.
The MATLAB code for the mean field calculation of

GOLðωÞ is provided in Ref. [34] along with a detailed
derivation of (12) [27].
The higher order of GCL in a multiple fixed point

setting implies that the stability condition on the dc gain
GOLðω ¼ 0Þ < 1 is no longer sufficient. A counterexam-
ple, shown in Fig. 1(d), demonstrates the emergence of
complex poles corresponding to unstable oscillatory behav-
ior. Thus, stability requires the evaluation of all M poles of
GCLðωÞ. Alternatively, the Nyquist criterion [35,36] can be
applied to the open loop system GOLðωÞ avoiding a direct

analysis of GCLðωÞ. Specifically, stability depends on
whether the curve GOLðωÞ from −∞ to þ∞ does not
encircle the point 1þ 0i in the complex plane (black
crosses in Fig. 1) [37].
Importantly, stable resonances may also emerge due to

the same mechanisms. Resonances are characteristic to a
specific steady state z ¼ An of the network rather than to
the network in general. Figure 2 demonstrates such a state-
dependent frequency selectivity in a bistable network. Such
selectivity is well known in biological neural circuits
[20,21], and our theory suggests that it can emerge as an
inherent consequence of having multiple steady states (e.g.,
fixed points) rather than due to some dedicated frequency
adaptation process. Remarkably, resonance emerges by
perturbing through an arbitrary input win in (1), and not
only through wFB, since the resonant eigenvalues shown in
Fig. 2 also dictate the slowest time scale of the system as a
whole, regardless of the input details.
While no fully analytical treatment for the resonance

characteristics is available, we note that we commonly
observed resonance frequencies in the range of ω0 ≈
0.1–0.5. Interestingly, Rajan, Abbott, and Sompolinsky
[4] predicted enhanced chaos suppression by stimuli in a
very similar frequency range, indicating a possible connec-
tion between the two phenomena. Supplemental Material
(Sec. 2) contains several bounds on these frequencies, but a
full analysis is beyond the scope of the current work.
Naturally, many questions arise concerning a generali-

zation of these results to more complex settings, such as
input-dependent outputs, time-varying targets, advanced
adaptive training algorithms, and dynamics in the noisy
(chaotic) regime beyond the fading memory domain
[1,26,38]. The initial investigation of a simple dynamical
task [15,39] shows that the local stability around fixed
points determines training success and failure [27], indicat-
ing the relevance of our work to more complex, time-
dependent settings. The derivation of an analytical solution

FIG. 2. Network with stable fixed points at A1 ¼ 0.5 (blue)
and A3 ¼ 1.5 (orange) exhibits frequency selectivity around the
lower fixed point A1, while at the higher fixed point A3 no such
selectivity exists. GCL for both cases is shown along with the
spectrum (top inset) and transient response for the same white
noise input (green) delivered throughwin to both fixed points. The
settings of Fig. 1(d) were used, except that here g ¼ 0.9.
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for such a case (left for a future work) requires an extension
of the dynamical mean field theory [3,4] to a nonstationary
case. Obviously, there also exist failure mechanisms that
are not determined by local dynamics; in particular, there is
an inherent trade-off between stability and sensitivity to
external input. As for chaotic networks, our analysis
indicates a smooth transition between chaotic and fading
memory regime. In particular, according to Eq. (9), the
output feedback loop remains formally stable at the edge of
chaos, while the assumption of ρ < 1 which was used to
derive this equation becomes invalid. Numerical simula-
tions of this setting show that the output becomes noisy but
remains stable [27].
In conclusion, we considered high-dimensional net-

works adapted to produce a desired low-dimensional out-
put. The output is being interpreted here as a firing rate but
can also stand for stable gene expression [40] or a variety
of other observables [41]. In all these cases, the network’s
internal state remains high dimensional and hard to
interpret or investigate directly. The method of combining
a mean field approach with system analysis presented here
enables predictions ranging from instability to extreme
robustness of the network of interest.
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