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We introduce the first multiorbital effective tight-binding model to describe the effect of electron-
electron interactions in this system. Upon fixing all the effective hopping parameters in the normal state
against an ab initio band structure, and with only the overall scale of the interactions as the sole adjustable
parameter, we find that a self-consistent Hartree-Fock solution reproduces extremely well the experimental
behavior of the charge density wave (CDW) order parameter in the full range 0 < T < Tc, as well as the
precise reciprocal space locations of the partial gap opening and Fermi arc development. The interaction
strengths extracted from fitting to the experimental CDW gap are consistent with those derived from an
independent Stoner-type analysis.
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The layered purple bronze K0.9Mo6O17 (KMO) has a
triple-Q charge density wave (CDW) phase below Tc ≃
120 K [1] and became the hallmark of “hidden nesting”
[2,3] because (i) despite its 3D layered structure, it has a
strongly anisotropic Fermi surface (FS) topology, (ii) has a
robust CDW phase below Tc, (iii) does not develop a lattice
distortion despite the commensurate CDW wave vector
(Qcdw) [4], and (iv) none of the formal Fermi sheets are
individually nested by Qcdw. Although the most recent
experiments favor a purely electronically driven CDW
instability [4], the K and Na purple bronzes remain largely
unexplored theoretically. Despite seminal work by
Whangbo et al. establishing the essential of the noninter-
acting electronic structure [3], there is no encompassing
microscopic model that addresses the role of interactions
and is capable of reproducing the key experimental
observations associated with the CDW phase. This con-
trasts with the related Li0.9Mo6O17, known to be quasi-1D
and for which microscopic frameworks based on the
Hubbard model [5] and Luttinger liquid theory [6] have
been proposed.
In a recent experiment, Mou et al. reported an out-

standing difference between electronic states in the bulk
and at the surface of KMO, inferred from observations by
angle-resolved photoemission spectroscopy (ARPES) of a
much higher Tc at the surface (≃220 K) [4] and a tenfold
increase of the associated “surface CDW gap.” These
remarkable findings stress the urgency for a theoretical
understanding of the mechanisms underlying such a large
tunability of both Tc and E0

g in the same compound and, in
particular, clarifying whether or not that arises from
variations in the strength of the relevant interactions, and
whether interactions are strong or weak.
We establish here an effective model for KMO that

(i) accurately accounts for the noninteracting physics of the
relevant t2g-derived bands, (ii) identifies the dominant

Coulomb interactions and their magnitudes, (iii) captures
extremely well the temperature dependence of the CDW
gap, and (iv) accurately reproduces the band folding,
renormalized FS, and Fermi arcs below Tc.
Noninteracting tight binding.—The crystal structure of

KMO is illustrated in Fig. 1(a) [1,7,8]. The system is a good
and strongly two-dimensional metal [7,9,10], understood as
the result of the oxygen-mediated overlap between t2g-
derived orbitals in the two inner slabs that leads to three
half-filled bands [2,7]. The directional character of these
effective overlaps leads to weakly hybridized quasi-1D
Fermi sheets [2] [Fig. 2(a)] that underlie the hidden nesting
and its CDW instability [3,11,12]. Partial gaps are believed
to develop below Tc, since the system loses only 50% of its
conductivity in the normal phase [7,9,10,13].
Figure 1(a) shows that the network of Mo atoms in the

electronically relevant two inner layers defines a honeycomb

FIG. 1. (a) Top view of the two inner KMO sublayers of
composition Mo2O9, and the full unit cell (inset); Mo, green and
blue; O, red; K, purple. (b) Simplified representation of the slab
shown in (a) with the oxygens removed and highlighting the
effective 1D zigzag chains generated by the three degenerate
Mo d orbitals. (c) Diagram of the site, orbital, and hopping labels
used in our tight-binding model.
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lattice. To make full use of the C3 symmetry, we introduce
three effective and equivalent orbitals: α, β, and γ. Their
overlap reflects the effectivep-mediated overlap between t2g
orbitals with a π (δ) character along the intra- (inter-) chain
directions. Each orbital is associated with one of the three
equivalent directions denoted by the red arrows in Fig. 1(b).
For example, in Fig. 1(c), there is a sizable hopping between
α orbitals along the upward-running zigzag chain but a
negligible one among α orbitals along the other two zigzag
directions, and equivalently for β and γ.We consider the four
hopping parameters represented in Fig. 1(c): t0 and t1
account for the intraorbital hopping (α − α, β − β, and
γ − γ) among nearest and next-nearest neighbors along
the corresponding zigzag direction, respectively; t2 is an
on-site interorbital hopping (α − β, etc.); t3 is a nearest-
neighbor interorbital hopping on the bonds shared by the
two corresponding chains (e.g., it represents the hopping
between α − β and α − γ). The Fourier transform of this six-
orbital tight-binding (TB) Hamiltonian is represented by

H0 ¼
X

kμνIJ

TμI;νJðkÞc†μIkcνJk; ð1Þ

where cμIk destroys an electron with crystal momentum k
at orbital μ ∈ fα; β; γg and sublattice I ∈ fA;Bg. The
explicit six-dimensional matrix TμI;νJðkÞ is provided in
Supplemental Material [14], together with the details of
the ab initio calculations and an extended discussion of
alternative approaches to obtain an appropriate TB model,
such as through density-functional theory (DFT)-derived
Wannier functions [24]. The TB parameters and chemical
potential are determined by fitting the three partially filled
bands to the DFT band structure within 1 eV of the
Fermi level and ensuring the filling factor is preserved in
the resulting TB [14]. We obtained ft0; t1; t2; t3; μg ¼
f454;−204; 136; 114; 659g meV.
Figure 2(a) shows that this effective Hamiltonian pre-

cisely captures the experimental FS [4,11] and reproduces
the overall features of the three occupied DFT bands
[Fig. 2(c)]. In particular, the two inner electron and outer
hole pockets arise from the avoided crossings of the
underlying 1D FSs as a result of the small hybridization
(controlled by t2;3) between these effective 1D chains.
A naïve consideration of the Peierls instability for each
independent 1D chain would not uniquely predict the CDW
wave vectors in this system. Conversely, none of the
individual 2D Fermi sheets is nested by the experimental
Qμ, and the consideration of the nesting condition of each
Fermi sheet independently would predict a different set of
CDW wave vectors. This “contradiction” between the
apparent nesting vectors of a strongly anisotropic 2D FS
and the actual Qμ that describe the CDW is the essence of
the hidden nesting concept [3]: The experimentally
observed Qμ are preferred because each can simultaneously
nest two of the three “hidden” 1D bands over the entire BZ.

Coulomb interactions.—The good band structure fitting
captured by the noninteracting model in Fig. 2(a) suggests
that interactions between quasiparticles are relatively small,
at least in the normal state. These are introduced in the
framework of a multiorbital extended Hubbard model,
similar to the description of iron-based superconductors
[25], where only the direct coupling terms are considered
(no exchange):

V ¼ 1

2V

X

k

X

μνIJ

VμIνJðkÞρμIðkÞρνJð−kÞ: ð2Þ

V denotes the volume of the system, and ρμIðqÞ ¼P
kc

†
μIkþqcμIk is the density operator. Both on-site and

neighboring interactions include intraorbital Hubbard terms
U between electrons with different spins and interorbital
Coulomb-like terms. We distinguish interactions along the
chain directions (intrachain) and across adjacent chains
(interchain) due to the anisotropy in the orbitals involved.
Our choice of three effective parameters captures the
essential details of the electronic interactions in this system
[14]: V1 (V2) defines intrachain intra(inter)-sublattice
interactions (quasi-1D, along each equivalent zigzag),
and the anisotropy factor η determines the extent to which
the full interacting Hamiltonian is more of a 1D nature
(η ¼ 0 for interactions only among orbitals belonging to the
same chain) or more 2D (η > 0).
Stoner analysis and Hartree-Fock treatment.—To assess

the magnitude of the interactions capable of driving the
system into the CDW phase, we studied the generalized
Stoner criterion for this instability along the same lines
used, for example, in multiorbital iron-based superconduc-
tors [25]. The RPA is used to obtain the strength of the

FIG. 2. (a) Calculated Fermi contours in the normal state
(T > Tc, green lines) plotted together with the FS measured in
Ref. [4]. Qμ represent the three experimentally measured CDW
wave vectors. (b) Intrasublattice and intraorbital susceptibility
(χd) along ΓM at T ¼ 115 and 220 K. The dashed lines show χd
calculated for decoupled 1D zigzag chains, while solid ones
(vertically shifted by 0.1 for clarity) correspond to the full 2D TB
model (see Supplemental Material for details [14]). (c) Overlaid
ab initio (solid lines) and TB (dashed lines) bands.
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interaction parameters compatible with the experimental
Tc at q ¼ Qcdw [14]. Figure 2(b) shows the dominant
diagonal element χd (intrasublattice and intraorbital) of the
electronic susceptibility matrix as a function of the temper-
ature and momentum along in two cases: the 1D limit of
decoupled chains and the full 2D TB model (see
Supplemental Material for details [14]). From the Stoner
criterion, we estimate 280≲V1−V2≲800meV. The upper
bound is obtained in the limit of 1D-only interactions, η ¼ 0,
and the lower for isotropic interactions, η ¼ 1. Since these
are considerably smaller than the bandwidth, we may treat
this as a weak or intermediate coupling system, justifying
a posteriori the analysis based on theRPA.Note that the bare
susceptibility curves plotted in Fig. 2(b) at 115 and 220 K
differ only slightly, which suggests that a small change in the
interaction parameters (a different screening environment)
can easily raise Tc from 115 to 220 K.
In order to describe the temperature dependence of

the CDW order parameter, we perform a Hartree-Fock
mean field (MF) decoupling of the interactions in Eq. (2)
and minimize the electronic free energy F with respect
to the order parameters ΔμIðQÞ≡ hρμIðQÞi, where Q ∈
f�Qα;�Qβ;�Qγg [14]. The minimization is done numeri-
cally due to the large 24-dimensional structure of the
decoupled Hamiltonian (6 × 4).
Consider first the simpler case of interactions restricted

to each chain (intraorbital interactions, but complete 2D
hoppings). In this case, the MF solution depends only on
the difference V1 − V2; we set V2 ¼ 0 and vary V1 > 0

until Tc is either 115 or 220 K, in order to compare the
results with the experimental transitions attributed to the
bulk and surface [4]. The temperature dependence of
the gap (Eg) along ΓK0 is presented in Fig. 3(a). Since
in this case the Coulomb interactions are determined by one
effective parameter only, it is not surprising to find a BCS-
like behavior in EgðTÞ. Significantly, in order to make
Tc ¼ 115 K, we must have V1 ≈ 740 meV, in agreement
with our independent estimate based on the generalized
Stoner criterion. Moreover, the zero-temperature gap
E0
g ≈ 17 meV, consistent with the experimental value

attributed to the bulk [4]. In other words, three nearly
independent zigzag chains seemingly suffice to explain
well, quantitative and qualitatively, the bulk properties of
KMO at the MF level. Figure 3(a) also illustrates the high
sensitivity of Tc to the magnitude of V1, since a 10%
increase in the latter causes a twofold amplification of Tc.
Even though this suggests that Tc can be very sensitive to
the local details of the interactions (screening, in particular)
and might be easily placed at the values Tc ≈ 220 K
attributed to the surface, the associated low-temperature
gap is far from the reported value of 150 meV [4].
Conversely, setting E0

g¼150meV (V1 ∼ 1050 meV) leads
to Tc ≈ 950 K.
The more general, yet manageable, model of the

Coulomb interactions introduces the three independent

parameters V1, V2, and η described earlier. Compared with
the 1D limit, the CDW phase is now more stable as, for the
same value of E0

g, we obtain a larger Tc. If V1 ¼ 360 meV,
V2 ¼ −250 meV, and η ¼ 0.2, we obtain perfect agree-
ment with the experimentally reported values [4]. The full
temperature dependence shown in Fig. 3(b) matches very
well with the experimental data. Note that this parameter set
is still far from the isotropic limit and fulfills the Stoner
bounds 280≲ V1–V2 ≲ 800 meV obtained above.
Furthermore, the model captures the crucial fact that the

gap opens at the right position along ΓK0 in the folded BZ.
This is shown in detail in Fig. 4(a), where, moreover, it is
clear that the point M0 remains gapless despite a finite
amount of repulsion among some of the folded bands. This
ensures that the system undergoes a metal-metal transition,
rather than metal-insulator, upon entering the CDW phase,
in accord with transport experiments [10,26]. The remain-
ing electron-hole pockets at M0 in the CDW phase are also
consistent with the experimental fact that charge carriers
change from electron- to holelike when entering the CDW
[1,7]. To better illustrate the FS restructuring below Tc, the
spectral function at μ ¼ 0 is shown in Fig. 4(b): The gaps
along ΓK0 and the finite band overlaps at M0 create Fermi
arcs centered at M0, compatible with the ARPES observa-
tions of enhanced spectral weight at these points [4,11].
The corresponding density of states (DOS) of the non-
interacting model in the normal state is compared with the
k-integrated spectral function in Fig. 4(c). Whereas the
former is nearly constant near EF, the spectral function has
a marked dip below Tc, in qualitative agreement with earlier
STM measurements [27] but remains finite as anticipated
from the persistence of the Fermi arcs in Fig. 4(b).
We note that this Fermi arc scenario is the one intuitively

expected within the hidden nesting picture: Since the
hybridization between the underlying 1D chains is strong-
est at M0 where they would otherwise be degenerate, the
vicinity of this point is where the least nesting occurs
among the 1D Fermi surfaces. The tendency for gap
opening is strongest at ΓK0 (stronger nesting) than at

FIG. 3. Gap along ΓK0 as a function of the temperature.
(a) Simplified treatment of the interactions (intraorbital inter-
actions, but complete 2D hoppings) discussed in the text. V1 ¼
740 meV and V1 ¼ 810meV yield Tc ¼ 115 K and Tc ¼ 220 K,
respectively. (b) The two gaps along ΓK0 for the more realistic
interacting Hamiltonian [see also Fig. 4(a)]. The experimental
data (points) are from Mou et al. [4].
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M0. Moreover, the experimental FS at T ≳ Tc [4,11] has a
clear predominance of spectral weight at M0, consistent
with Fig. 4(b) [28].
Figure 4(a) also shows that there are, in fact, two “gaps”

along ΓK0, because there are two quasidegenerate bands
there in the normal state as a result of the BZ folding.
Whereas in the 1D treatment of the interactions, the gap
opens without lifting this degeneracy, the more 2D inter-
action lifts it and the two bands are pushed down by
different amounts, as shown explicitly in Figs. 4(a) and 4(b)
and in Fig. 3(b) as a function of the temperature. The
ARPES data also reveal two gaps at this point, one
attributed to the bulk and another that backbends below
Tc attributed to the surface layers. It is tempting to relate
them to the features of Fig. 4(a) along ΓK0. However, on the
one hand, the splitting of the two bands below Tc seen in
Fig. 4(a) cannot correspond to the two bands in the
experiment, because the splitting of either of them follows
a BCS trend as a function of the temperature [Fig. 3(b)],
unlike the surface gap that seems to set in instantaneously
below Tc. On the other hand, the second band in Fig. 4(a) is
a consequence of the BZ folding, and the experiments,
despite the robust CDW, show no sign of backfolding in the
bands attributed to the bulk of the system. Hence, either the

second band that is being pushed down along ΓK0 in
Fig. 4(a) lies further away from the Fermi level in the real
system than with the parameters chosen in Fig. 4(a), or the
backfolded spectral weight is too weak to be detected
experimentally, in which case this secondary gap would be
discernible only in the extended zone, on the FSs cut by the
BZ boundary, for example. Measurements along larger
portions of the extended zone would help clarify the
renormalization of the band structure in the CDW phase.
Discussion.—The essence of our model lies in the three

coupled effective 1D chains illustrated in Fig. 1(b). Their
weak hybridization entails a strongly anisotropic FS and,
through hidden nesting and Coulomb interactions, deter-
mines a robust CDW instability [2,3]. The interaction
parameters estimated in the RPA have magnitudes in the
range ≲1 eV expected for the octahedral MoO6 network
[29] and are entirely consistent with the magnitudes needed
to reproduce the experimental temperature dependence of
the gap in ΓK0 (Fig. 3). The emergence of a band gap at this
particular point in the BZ is not an obvious expectation
a priori (it is not nested by Qcdw) and is another strong
validating point.
That the experimental Tc and full T dependence of the

CDW gap are remarkably well described within a MF BCS-
type theory (Fig. 3) might seem unexpected at first given
the reduced dimensionality. We attribute it to the combi-
nation of three factors: (i) Although the effective 1D chains
are a useful concept for the modeling, we saw that the
actual system is quasi-2D given the nature of the electronic
hybridization and interactions, which stabilizes the MF
solution; (ii) phase fluctuations, which tend to be the
dominant suppressor of CDW order, are gapped in a
commensurate CDW [30]; (iii) the FS is fully gapped at
T ≤ Tc except for the tiny pockets or arcs we find around
M0 (Fig. 4) and where ARPES reveals pseudogap-type
behavior [12].
Points (ii) and (iii) leave essentially no elementary nor

collective excitations to destabilize the MF solution,
indicating that the Ginzburg criterion may be well satisfied
over a large range of temperature below Tc. Point (ii) is
particularly important, in that it might explain not only the
MF behavior of the bulk but also the strikingly different
signatures of the gap attributed to the surface:
A simple rescaling of the parameters cannot explain the
secondary gap along ΓK0 seen in ARPES. This would seem
to indicate that different microscopic details could be in
play at the surface (this sometimes called “extraordinary
phase transition” is common in other correlated systems
[31,32]). A strongly correlated state has been suggested [4],
but, not only is that in sharp contrast with the weak-
coupling nature of this system in the bulk, it is incompatible
with the experimental absence of any anomalous signatures
in the normal state (including quasiparticle renormaliza-
tion) other than the “anomalous” secondary gap. Another
possibility, that we favor, is that fluctuations might be

FIG. 4. (a) Self-consistent band structure in the CDW phase
along the high symmetry directions of the folded zone at T ¼ 0
(V1 ¼ 360 meV, V2 ¼ −250 meV, η ¼ 0.2). The rightmost
panels amplify the dashed rectangles around M0 and ΓK0,
respectively. (b) Spectral function at ω ¼ μ (artificially broad-
ened by 5 meV, folded zone). Ungapped portions of the FS
(Fermi arcs) lie around M0 (red, darker regions). (c) Noninteract-
ing (main panel) and renormalized (inset) DOS.
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strongly enhanced at the surface. Figure 3(a) shows that E0
g

is very sensitive to the strength of interactions, as would be
required to explain the higher stability of the CDW at the
surface from reduced screening, but the experimental T
dependence is highly non-MF there. However, reduced
screening combined with bolstered fluctuations can explain
the downsizing in surface Tc in comparison with that (over)
estimated in the MF based on the measured surface gap.
The lock-in energy that drives commensurability is usually
reinforced by interlayer CDW coupling, which will dimin-
ish for the surface slab. That can reduce the gap of the phase
modes or even suppress it, since incommensurability can be
favored under poor screening [33], thus explaining the
enhanced fluctuations. Current experiments are not con-
clusive as to the (in)commensurability on the surface but do
reveal superlattice diffraction peaks much above the “sur-
face Tc,” albeit broadened and weak [4]. This might point
to phase fluctuations through discommensurations taking
place at the surface, in line with the above picture.
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