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We investigate the temporal photonic analogue of the dam-break phenomenon for shallow water by
exploiting a fiber optics setup. We clearly observe the decay of the steplike input (photonic dam) into a pair
of oppositely propagating rarefaction wave and dispersive shock wave. Our results show evidence for a
critical transition of the dispersive shock into a self-cavitating state. The detailed observation of the
cavitating state dynamics allows for a fully quantitative test of the Whitham modulation theory applied to
the universal defocusing nonlinear Schrödinger equation.
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Introduction.—The laser light propagating in nonlinear
media often behaves as a photon fluid [1–9], sharing
phenomena that characterise fluid flows such as rogue
waves [2], instabilities [3], transition to turbulence [4],
coherent [5] and incoherent [6] shock waves, superfluid
flow around obstacles [7,8], and droplet- or bubblelike
behavior [9]. In regimes described by the defocusing non-
linear Schrödinger equation (NLSE), a distinctive trait of the
photon fluid evolution is the formation of dispersive shock
waves (DSWs, or undular bores) [5,10–14], fast oscillating
wave trains that spontaneously emerge from the tendency to
develop a gradient catastrophe [15–17]. DSWs are ubiqui-
tous, being observed in other systems ruled by the NLSE
such as cold atom condensates [18] and spin waves [19], as
well as in other dispersive hydrodynamic settings involving,
e.g., electrons [20], water waves [21], and viscous fluid
conduits [22]. A major breakthrough in the analytical
description of the DSW is the Whitham modulation theory
[15–17,23–25], which, however, assumes DSWs to develop
from steplike initial conditions (the Riemann problem),
whereas experiments to date have been mostly concerned
with smooth or periodic initial conditions. Therefore experi-
ments devoted to investigate the dispersive Riemann prob-
lem are of paramount importance for advancing the
understanding of dispersive hydrodynamic flows, a fortiori
for the NLSE where the modulation theory predicts critical
transitions in the behavior of the shock [18,25].
In this Letter, we exploit a fiber optics setup to investigate

experimentally the Riemann problem associated with an
initial step, in the temporal domain, in the optical power. In
the absence of any frequency chirp across the jump such a
problem is isomorphic to the classic 1D dam-break problem
of hydrodynamics [26–28]. Indeed, we demonstrate that the
light evolves as a fluid mimicking the basic features of the
dam break in shallow water, namely, the decay into a shock
and a rarefaction-wave (RW) pair, connected by an expand-
ing plateau. The dispersive character of the shock, however,

leads to a critical transition, which is predicted in the
framework of Whitham theory [18,25]. Above a critical
height of the jump, we report evidence for the onset of
self-cavitation, i.e., the appearance of a null point in the
optical power. The full experimental characterization of the
cavitating state allows, for the first time, for a quantitative
comparison with modulation theory.
Theory of dispersive dam break.—The dam-break

Riemann problem that we investigate is described by the
NLSE that rules the evolution of the temporal envelope
field EðT; ZÞ along the fiber distance Z
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the constant left and right power levels PL and PR ≥ PL
define the bottom and the top of the optical dam in T ¼ 0
[see Fig. 1(a)]. Here T ¼ T lab − k0Z is the retarded time
in a frame moving with group-velocity 1=k0 ¼ dk=dωj−1ω0
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where we set z ¼ Z=Z0, t ¼ T=T0 with Z0 ≡ ðγPRÞ−1, and
T0 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k00=γPR

p
. By neglecting the right-hand side (RHS)

containing higher-order derivatives (quantum pressure term
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[5]), Eqs. (2)–(3) constitute the dispersionless vector con-
servation law known as the shallowwater equations (SWEs)
[28]. The role of local water depth and longitudinal velocity
are played here by the normalized power ρ ¼ jEj2=PR and
chirp u, whereas space and time have an interchanged role.
The evolution of an initial (z ¼ 0) step elevation from ρL to
ρR > ρL [29], with uðt; 0Þ identically vanishing, is the
classic dam-break Riemann problem. The solution of the
SWEs, first given by Stoker [26], can be formulated
in terms of the self-similar variable τ ¼ t=z [30] and involves
a classical shock wave and a RW. As shown by the black
solid line in Fig. 1(a), the shock and the RW propagate in
opposite directions (towards t < 0 and t > 0, respectively,
or the downstream and upstream directions in the hydro-
dynamic problem), being connected by an expanding
plateau characterized by intermediate constant values
ρi ¼ ð ffiffiffiffiffi

ρL
p þ ffiffiffiffiffi

ρR
p Þ2=4, ui ¼ ffiffiffiffiffi

ρL
p − ffiffiffiffiffi

ρR
p

. The step values
ρL and ρR also fix the edge velocities of the smooth RW to
the values

τ4 ¼
ffiffiffiffiffi
ρR

p
; τ3 ¼

3
ffiffiffiffiffi
ρL

p − ffiffiffiffiffi
ρR

p
2

: ð4Þ
Conversely, the jump from ρi, ui to ρL, uL ¼ 0 constitutes a
classical shock moving with velocity τRH ¼ ρiui=ðρi − ρLÞ
derived from the well-known Rankine-Hugoniot condition
[28]. However, such shock is regularized into an oscillating
DSW by the effect of the RHS of Eq. (3) that stems from
dispersion. A snapshot of the breaking scenario obtained
from the full NLSE is comparedwith the dispersionless limit

(SWEs) in Fig. 1(a). The DSW is delimited by two edge
velocities τ1;2 (τ1 < τRH < τ2), where the oscillations vanish
(linear edge) or become deepest (soliton edge [31]), respec-
tively [15,18,25]. According toWhithammodulation theory
such velocities read as [25,32]
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2
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whereas, in the same framework, owing to the RW smooth-
ness, one recovers Eqs. (4) for the RWedges. The velocities
τ1;2 in Eqs. (5) and τ3;4 in Eqs. (4) define the wedges where
the DSW and RW expand, as shown (in dimensional units,
i.e., including the multiplicative factor T0=Z0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k00γPR

p
for our fiber) in Fig. 1(b). Importantly, themodulation theory
entails a crossover between two different regimes separated
by a critical condition. In the first regime, the DSW
envelopes are monotonic and the DSW power never van-
ishes, as shown in Fig. 1(a). However, below a critical value
of the key parameter, namely, the ratio between the quiescent
(downstream and upstream) states, that we henceforth
denote as r ¼ ρL=ρR ¼ PL=PR, the DSW exhibits a self-
cavitating point (i.e., zero power, corresponding to a vacuum
point in gas dynamics), which we found at [32]
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where E and K are elliptic integrals of the first and second
kind, respectively, of modulus m ¼ 4ρL=ð ffiffiffiffiffi

ρL
p − ffiffiffiffiffi

ρR
p Þ2.

The threshold for cavitation can be obtained by imposing
m ¼ 1 (cavitation on soliton edge of the DSW), or, equiv-
alently, τ2 ¼ ui, from which we obtain

rth ≡
�
ρL
ρR

�
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≡

�
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PR

�
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¼ 1

9
≃ 0.11: ð7Þ

For PL=PR below such threshold, a vacuum point always
exists, which tends towards the linear edge of theDSWin the
limit PL → 0. In this limit, however, both the oscillation
amplitude and the plateau extension tends to vanish [25],
and one recovers the limiting hydrodynamic case known as
“dry-bed” dam break, characterized by a single RWextend-
ing to zero and no shock [27,33,34].
Experiment.—We performed a series of experiments to

provide evidence for the decay of a photonic dam (i.e., a
temporal step in optical power) into the DSW-RWpair and for
the critical transition to self-cavitation. In our experimental
setup (see also Ref. [32]), we make use of a continuous laser
diode source emitting at λ ¼ 1560 nm, which is intensity
modulated by an electro-optic modulator driven by an
arbitrary waveform generator, with typical rise time Tr ∼
25 ps (raised tanh shape, rising from 10% to 90% in ∼50 ps)
and 78 MHz repetition rate. The signal is preamplified in a
semiconductor optical amplifier, and then it passes through a
spectral filter to remove amplified spontaneous emission in
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FIG. 1. (a) Snapshots comparing the DSW-RW pair (solid blue
curve) obtained from the NLSE with steplike input EðT; 0Þ ¼
fPL þ ðPR − PLÞ½1þ tanhðT=TrÞ�=2g1=2 (dashed red) with the
ideal dispersionless solution of the SWEs (solid black). The
oscillations over the top of the RW are due to the Gibbs
phenomenon [35]. (b) Wedges in ðT; ZÞ plane corresponding
to the RW (fable orange), the DSW (green), and the plateau in
between. The boundaries correspond to slopes

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k00γPR

p
τj, j ¼ 4,

3, 2, 1. Here k00 ¼ 176 ps2=km, γ ¼ 3 ðWkmÞ−1, PR ¼ 1 W,
PL ¼ 150 mW, Tr ¼ 10 ps.
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excess, and is finally amplified bymeans of an Erbium-doped
fiber amplifier. This signal is launched in a dispersion
compensating fiber (i.e., a fiberwith large positive dispersion),
with parameters as in the caption of Fig. 1, and analyzed in the
time domainwith an optical sampling oscilloscopewith 1.6 ps
resolution. A typical shape of the steplike signal that we
obtained is shown in Fig. 2(a). Two elevating steps in power
from zero to PL and from PL to PR, can be adjusted
independently, and are followed by a descending step (trailing
edge) back to zero. The advantage of using this specific signal
shape is that, in the same experimental run, we can compare
(i) the DSW-RW dynamics developing around the jump from
PL to PR, with (ii) the dry-bed dynamics developing over the
descending step. Importantly, the duration of each of the
constant power states PL, PR was adjusted to be long, up to
∼1 ns, so that the DSW-RW pair can develop without feeling
the interaction with the first step and the trailing edge of the
waveform. Clearly, as can be seen in Fig. 2(a), the main step
(PL toPR) is not instantaneous. However, the short rising time
allows us to clearly observe the dam-break phenomenon, as
we will see below. Another challenging issue faced in the
experiment is the loss compensation. Indeed, the DSW-RW
dynamics is very sensitive to losses and even weak losses of
optical fibers (0.5 dB=km) are strongly detrimental. For
instance, the plateau that connects the RW and the DSW
would be completely distorted, not allowing for a quantitative
comparison with theory (see Figs. S2 and S3 in Ref. [32]).
Inspired from transparent telecom networks, we counterbal-
anced linear losses bymeans of Raman amplification [36,37].
To this end, a counterpropagating beam was injected in the
fiber at λ ¼ 1482 nm. In this way, we achieve significant
(close to peak) Raman gain with weak relative noise intensity
transfer [36,37].
Figure 2(b) shows the output temporal trace obtained for

the input steplike signal with PR ¼ 0.6 W, PL ≃ 100 mW

(r≃ 0.16). As can be seen, the input optical dam at T ¼ 0
breaks into a DSW-RW pair. The DSW is characterized by
fast oscillations with ∼40 ps average period [the period
scales proportionally to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k00=ðγPiÞ

p
]. The RW smoothly

connects the plateau with power Pi ≃ 0.3 W (in agreement
with the theoretical prediction Pi ¼ PRρi ¼ 0.297 W) to
the peak level PR. Conversely, over the trailing edge, no
shock occurs and a smooth RW dropping to zero is
observed, consistently with the case of dry-bed dam break.
Overall, the data show an excellent agreement with the
numerical simulations reported in Fig. 2(d) based on
the NLSE (1). We emphasize that the occurrence of the
DSW-RW pair is related to the nonzero background and not
to the character (ascending vs descending) of the step.
Indeed the DSW-RW pair is observed on the trailing edge
for a mirror-symmetric input.
We have then proceeded to investigate in detail the

breaking dynamics of the steplike input into the DSW-RW
pair for different heights of the optical dam. The results
shown in Fig. 3, are obtained for a fixed peak power
PR ¼ 0.8 W (slightly larger than that of Fig. 2), and a
variable background PL, i.e., a variable ratio r. For a
quantitative comparison with Whitham modulation theory
we also report, as vertical dashed lines superimposed on the
measured data, the delays Tj¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k00γPR

p
τjL, j¼1, 2, 3, 4

corresponding to the edges of the RWs in Eq. (4) and the
DSW in Eq. (5), respectively. We remark that (i) the
experimental traces (left column) show a very good agree-
ment with both simulations based on the NLSE (right
column), and the predicted delays Tj from modulation
theory, (ii) the duration of the plateau connecting the DSW

FIG. 2. Temporal traces of the whole waveform: (a),(b) experi-
ment; (c),(d) numerics. The left column (a),(c) shows the input;
The right column (b),(d) is the output power profile after
propagation along the 15 km long fiber. The vertical dashed
lines give the predicted delays of the edges of the RW [gray and
orange lines, from Eqs. (4)] and the DSW [magenta and green
lines, from Eqs. (5)], respectively.

FIG. 3. Temporal traces at the fiber output for constant peak
power of the photonic dam PR ¼ 0.8W and different background
fractions r: (a1,a2) 0.15; (b1,b2) 0.11; (c1,c2) 0.03; (d1,d2) 0.01.
Left column: experimental results. Right column: numerical
simulation based on the NLSE.
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and the elevating RW significantly shrinks as the ratio r
decreases (from top to bottom in Fig. 3), again in
quantitative agreement with modulation theory which
predicts that jτ2 − τ3j reduces when r decreases, and (iii) for
relatively large ratios r the DSW never touches zero and the
edge τ2 of the DSW (where m ¼ 1) is constituted by a gray
soliton [18], as shown in Figs. 3(a1)–3(a2). However, by
decreasing r, we observe the onset of cavitation when the
soliton at the trailing edge of the DSW becomes black [see
Figs. 3(b1), 3(b2), r ¼ 0.11]. The observed threshold value
r ¼ 0.11 is in excellent agreement with the theoretical
prediction [Eq. (7)]. While the black soliton possess a zero
velocity (with respect to its background), the DSW edge
maintains a finite velocity due to the chirped background
(velocity ui). Also associated with such black soliton we
expect a phase jump of π [see Fig. S5(b) for more details]
which, however, cannot be measured with our setup. At
even lower ratios r, the vacuum point shifts towards the left
and the DSW envelope becomes nonmonotonic.
While the results in Fig. 3 already show the crossover to

the cavitating state, a detailed quantitative study of this
regime requires to operate with a DSW possessing larger
extension and shorter average period. To this end, we
operate at the maximum available power in our setup,
PR ¼ 1 W. This allows us to observe a DSW exhibiting
several oscillations with an average period of ∼30 ps,
spanning a range that exceeds 400 ps, as shown in the
inset of Fig. 4(e), for PL ¼ 50 mW or r ¼ 0.05.
Importantly, in this regime the delay of the cavitating state
(zero power) can be accurately identified within the DSW.
Figures 4(a)–4(d) display a zoom over the bottom part of
the DSW in order to show how the cavitating state moves
when the ratio r is varied across the threshold. As shown in
Figs. 4(a1)–4(a2), when r ¼ 0.15, the DSW still exhibits
monotonic envelopes featuring a gray soliton edge with
nonvanishing dip. However, Figs. 4(b1)–4(b2) show very
clearly the onset of cavitation (black soliton edge) at the
threshold r ¼ 0.11, in agreement with Eq. (7). Decreasing
further r (i.e., for higher dam heights) leads the cavitating
state to acquire increasingly negative delays, shifting
progressively towards the linear edge of the DSW, as clear
from Figs. 4(c1)–4(c2) for r ¼ 0.07 and Figs. 4(d1)–4(d2)
for r ¼ 0.03. For all cases the numerical simulations are
still in good agreement with the measured profiles. We
summarize in Fig. 4(e) the delays of the vacuum state
extracted from the measured temporal traces for different
ratios r (see also Ref. [32]) in the range 0.01 ≤ r ≤ rth
(below r ∼ 0.01, the residual noise makes impossible to
resolve the delay of the vacuum which is quite close to
the linear edge). The data are contrasted with the theoretical
prediction from Eq. (6), showing a satisfactory agreement
in the whole range. We ascribe the discrepancies to the
finite rise-time of the step and to the asymptotic character
of Whitham theory, which is expected to become more
accurate as the propagation length increases and/or the
dispersion decreases [16].

In summary, we have reported the fluid behavior of light
in a dispersive dam-break experiment, revealing a transition
to cavitation in close quantitative agreement with the
predictions of modulation theory. Such behavior is
expected to be universal for systems ruled by the NLSE,
while qualitatively differing from other dispersive breaking
scenarios observed in fluids [38]. Our platform could be
further used to explore other critical behaviors in the
general dispersive Riemann problem [25,39], including
the focusing case [40], where a different DSW composed
by bright solitons can emerge and can also lead to the
generation of rogue waves.
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