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We report a first, complete lattice QCD calculation of the long-distance contribution to the Kþ → πþνν̄
decaywithin the standardmodel. This is a second-orderweak process involving two four-Fermi operators that
is highly sensitive to new physics and being studied by the NA62 experiment at CERN. While much of this
decay comes from perturbative, short-distance physics, there is a long-distance part, perhaps as large as the
planned experimental error, which involves nonperturbative phenomena. The calculation presented here, with
unphysical quark masses, demonstrates that this contribution can be computed using lattice methods by
overcoming three technical difficulties: (i) a short-distance divergence that results when the two weak
operators approach each other, (ii) exponentially growing, unphysical terms that appear in Euclidean, second-
order perturbation theory, and (iii) potentially large finite-volume effects. A follow-on calculation with
physical quarkmasses and controlled systematic errorswill be possiblewith the next generation of computers.
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Introduction.—An important objective of experimental
high-energy physics is the search for direct and indirect signs
of new physics. Complementary to the direct search for new
particles and forces at high energy, is the search for subtle
deviations from standard model predictions at lower ener-
gies. The rare kaon decays K → πνν̄ are such examples. As
flavor-changing-neutral-current processes, the K → πνν̄
decay amplitudes arise as one-loop, electroweak effects.
The small size of one-loop, standard model effects makes
these decays particularly sensitive to new phenomena.
These decays are short-distance dominated so that the

contributions from the strong interactions can be calculated
accurately using QCD perturbation theory. As two of the
theoretically cleanest processes, the K → πνν̄ decays have
attracted considerable attention and motivate two new
experiments. NA62 at CERN [1] searches for the Kþ →
πþνν̄ decay with a target of determining the branching ratio
to 10% precision. The KOTO experiment at J-PARC [2]
focuses on the search for the CP-violating decay KL →
π0νν̄ and has recently reported the observation of the first
candidate event [3].
Of the two rare kaon decays, the charged decay poten-

tially receives the larger long-distance contributions. In
fact, the standard model prediction for this decay rate may
be enhanced by 6% when long-distance contributions are
included [4], while the total uncertainty in the standard

model prediction is 10% [5]. In Ref. [6] we have presented
a method using lattice QCD that allows a first-principles
calculation of these long-distance contributions with con-
trolled errors. Here we apply this approach, carrying out a
complete exploratory lattice QCD calculation of the long-
distance contributions to the Kþ → πþνν̄ decay with
unphysical quark masses.
The methods used here are closely related to those

developed earlier to compute other, second-order electro-
weak effects, specifically the KL-KS mass difference [7,8]
and the long-distance contributions to the indirect CP-
violating parameter ϵK [9,10]. This work is also part of a
larger effort that includes the lattice QCD calculation of the
rare kaon decays K → πll̄ [11,12].
Formulation.—As explained in Ref. [6], the Kþ → πþνν̄

decay amplitude is conventionally expressed as the sum of
top- and charm-quark contributions. The long-distance part
of interest appears in the charm quark contribution, which
can be written as the matrix element of a combination of
bilocal and local operators of the form

OðyÞ ¼
X
A;B

Z
d4xT½CAQAðxÞCBQBðyÞ� þ C0Q0ðyÞ; ð1Þ

where T indicates a time-ordered product and the local
operator Q0 ¼

P
l¼e;μ;τðs̄dÞV−Aðν̄lνlÞV−A. The Wilson
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coefficients CSðμÞ contain short-distance information from
the W scale down to the lower energy scale μ at which the
operators QS are renormalized. The QS with S ¼ A, B are
seven, four-Fermi operators which enter the first-order,
weak Hamiltonian density, Heff ¼

P
S
~CSQS, where ~CS is

the product of CSðμÞ, a CKM matrix element and other
conventional factors.
When two first-order operators are multiplied in such a

second-order calculation, e.g., QAðxÞQBð0Þ, new singular-
ities appear as x → 0. The counterterm C0Q0ð0Þ removes
these singularities and reproduces the physical amplitude.
For sufficiently large μ, e.g., μ ¼ 3 GeV, the coefficient C0

can be determined in perturbation theory.
If the bilocal operator in Eq. (1) is renormalized at such a

large scale μ, then the short-distance physics from the scale
of the W mass down to μ will be represented by the local
operator C0Q0 which, enhanced by lnðM2

W=μ
2Þ, is expected

to give the largest contribution and is readily evaluated
because C0 is known from perturbation theory and
hπjQ0jKi can be determined from the measured Kl3 form
factor Fþ. It is the bilocal operator in Eq. (1) which is the
focus of this Letter.
In the conventional treatment [5] the bilocal operator is

also approximated by Q0 multiplied by a perturbative
Wilson coefficient rABðμÞ, obtained by integrating out
the charm quark. Combining rABðμÞ with C0ðμÞ, one
determines the total Wilson coefficient for Q0, written as

PPT
c ¼ 1

λ4
π2

M2
W

�X
A;B

CAðμÞCBðμÞrMS
AB ðμÞ þ C0ðμÞ

�
; ð2Þ

where λ is the CKM matrix element jVusj and the label PT
has been introduced to identify a perturbative result. PPT

c
has been calculated in NNLO QCD perturbation theory,
giving PPT

c ¼ 0.365ð12Þ where the error reflects the
dependence on μ [5]. A correction to PPT

c , which estimates
up-quark and other long-distance effects suppressed by
ðΛQCD=mcÞ2, is written as δPc;u ¼ 0.04ð2Þ [4].
The errors in this conventional treatment of the bilocal

operator are expected to be a few percent but are difficult to
estimate or to reduce. Here we use lattice QCD to provide a
first-principles and systematically improvable calculation
of the contribution of this bilocal operator.
In the standard perturbative calculation which deter-

mines OðyÞ, the Wilson coefficients CSðμÞ and C0ðμÞ are
computed and the local operators and bilocal operator
products are renormalized in the modified minimal sub-
traction ðMSÞ scheme. As described in greater detail in
Ref. [6], we relate these MS operators to lattice operators
by using an intermediate, regularization-independent sym-
metric momentum (RI-SMOM) scheme [6,13], illustrated
for QA and QB by the equation

�Z
d4xT½QMS

A ðxÞQMS
B ð0Þ�

�
MS

μ

¼ Zlat→MS
A Zlat→MS

B

�Z
d4xT½Qlat

A ðxÞQlat
B ð0Þ�

�
lat

a

− ZRI→MS
A ZRI→MS

B Xlat→RI
AB ðμRI; aÞfQ0ð0ÞgRIμRI

þ YRI→MS
AB ðμ; μRIÞfQ0ð0ÞgMS

μ ; ð3Þ

where the renormalization factors ZS→S0
AðBÞ convert QAðBÞ

from scheme S to scheme S0, assuming they are multipli-
catively renormalized, and a is the lattice spacing. To
handle the singularity at x ¼ 0 in the product
Qlat

A ðxÞQlat
B ð0Þ, we introduce the Q0 term. By adding the

counterterm Xlat→RI
AB ðμRI; aÞfQ0gRIμRI , we first convert the

simple bilocal product of individually renormalized RI
operators into a bilocal operator renormalized in the RI-
SMOM scheme. The Wilson coefficient Xlat→RI

AB ðμRI; aÞ can
be determined nonperturbatively by imposing the RI-
SMOM renormalization condition, described below, at a
scale μRI. In the second step, we use QCD perturbation

theory to determine the YRI→MS
AB ðμ; μRIÞfQ0gMS

μ term, which
converts the RI-SMOM bilocal operator to a MS operator,
renormalized at the scale μ. The use of perturbation theory
requires μ; μRI ≫ ΛQCD. Greater detail is given in Ref. [6].
Lattice ensemble.—We use the 163 × 32, 2þ 1 flavor,

domain wall fermion ensemble, with a−1 ¼ 1.729ð28Þ GeV
and a fifth-dimensional extent of Ls ¼ 16 generated by the
RBC and UKQCDCollaborations [14]. This ensemble has a
residualmassmresa ¼ 0.00308ð4Þ andpion andkaonmasses
of Mπ ¼ 421ð1Þð7Þ MeV and MK ¼ 563ð1Þð9Þ MeV. We
use a valence charmmass,mca ¼ 0.330, giving anMSmass

mMS
c ð2 GeVÞ ¼ 863ð24Þ MeV. We analyze 800 gauge

configurations, each separated by 10 molecular dynamics
time units.
We work in the kaon rest system and describe the πþνν̄

final state using the Dalitz variables s ¼ −ðpK − pπÞ2 and
Δ ¼ ðpK − pνÞ2 − ðpK − pν̄Þ2. Since Mπ ≈ 420 MeV, the
allowed, final-state momenta lie in a narrow region.
Assuming little variation across this region, we use the
single momentum choice ðΔ; sÞ ¼ ð0; 0Þ by fixing the pion
spatial momentum p⃗π ¼ ð0.0414; 0.0414; 0.0414Þ=a, so
that the neutrino and antineutrino move in the opposite
direction, each carrying the momentum −p⃗π=2. The pion’s
spatial momentum is fixed by imposing twisted boundary
conditions on the down valence quark.
Bilocal operator.—The Feynman diagrams correspond-

ing to the matrix element of the bilocal operator in Eq. (1)
are shown in Fig. 1. We use Coulomb-gauge-fixed wall
sources for the valence quarks propagators joined to the
initial kaon and final pion states. For the diagrams (a), (b),
and (d), which do not contain a closed quark loop, we treat
the two weak interaction vertices asymmetrically. One is
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evaluated at a fixed point, which is used as the source for the
internal quark lines connected to that operator. The second
operator acts as the sink for all the propagators joined to it and
is summed over the desired space-time subvolume. For
higher precision we average over time translations, calculat-
ing these wall- and the point-source propagators for all 32
time slices. In theW-W diagrams in Fig. 1, we also exchange
the source and sink locations between the twoweakoperators
and average over both choices.
Each internal lepton propagator is that of an overlap

fermion with an infinite time extent and a physical lepton
mass. For the Z-exchange diagram where the decay
involves a four-quark operator and a two-quark-two-
neutrino operator, both operators can generate a closed
quark loop. Thus, we need to calculate the diagonal element
of the light, strange, and charm quark propagators
D−1ðx; xÞ for all space-time positions x. This is done by
using 32 random, space-time volume sources for each
quark flavor. We perform a complete calculation, including
all connected and disconnected diagrams.
In a lattice QCD calculation, the matrix element of the

time-integrated bilocal operator appearing in Eq. (1) is
evaluated in Euclidean space. As in the case of the
calculation of the KL-KS mass difference [7], this matrix
element can be related to the second-order amplitude of
interest if a sum over intermediate states is inserted and the
integration over Euclidean time performed:

Z
Tb

−Ta

dx0hπþνν̄jTfHAðx0ÞHBð0ÞgjKþi

¼
X
n

�hπþνν̄jHAjnihnjHBjKþi
En − EK

ð1 − eðEK−EnÞTbÞ

þ hπþνν̄jHBjnihnjHAjKþi
En − EK

ð1 − eðEK−EnÞTaÞ
�
; ð4Þ

where we have replaced the local operators in Eq. (1) by
those integrated over space:HSðx0Þ ¼

R
d3xQSðx⃗; x0Þ. The

unphysical eðEK−EnÞTaðbÞ terms in the second and third lines
of this equation vanish for large TaðbÞ for intermediate states
more energetic than the kaon. However, these terms grow
exponentially with increasing integration range if En < EK .
These are calculated separately and their contributions
removed; see Refs. [6,7,9,11].
A second difficulty implied by Eq. (4) is the possibility

of a large contribution caused by a vanishing denominator
when a finite-volume intermediate-state energy En
approaches EK [6]. Such behavior is a well-understood
finite-volume effect and a complete correction can be
applied [15]. Thus, we must pay special attention to three
states jni ¼ jlþνi, jπ0lþνi and jðπþπ0ÞI¼2i and calculate
all the transition amplitudes for Kþ → jni and jni →
jπþνν̄i both to remove the exponentially growing terms
and to estimate finite-volume effects.
Because of the V − A structure of the weak interactions

and thevanishingmass of the final-state neutrinos, the bilocal
matrix element can be written as the product of a scalar
amplitude and the spinor quantity ūðpνÞpKð1 − γ5Þvðpν̄Þ, as
is shown in Ref. [6]. For the W-W diagrams this scalar
amplitude is written as FWWðΔ; sÞ.
For the Z-exchange diagrams the scalar amplitude is

given by a Kl3-like form factor FZþðsÞ. For massless
neutrinos, a second form factor, FZ

−ðsÞ does not contribute.
We compute FZþð0Þ for the connected diagrams as
described earlier and FZ

0 ðsÞ ¼ FZþ þ sFZ
−=ðM2

K −M2
πÞ for

both the connected and disconnected parts at p⃗K ¼ p⃗π ¼ 0

and s ¼ smax ¼ ðMK −MπÞ2. We calculate FZ;disc
0 ðsmaxÞ

instead of FZ;disc
þ ð0Þ to avoid using twisted momenta for

the disconnected graphs and expect this to have a small
effect since smax=ðM2

K −M2
πÞ ¼ 0.14 ≪ 1 and FZ;conn

þ ð0Þ ≈
FZ;conn
0 ðsmaxÞ as seen in Table I.
Our results for the various components of the scalar

amplitude are shown in Table I. For the W-W, type 1
diagram, the dominant contribution to FWW comes from the
lowest intermediate state jlþνi. The type 2 diagram yields
a much larger contribution than type 1. Since it involves a
fermion loop, the dominant contribution comes from short
distances where new divergences appear and a short-
distance correction is required. The jπ0lþνi intermediate
state contributes only about 8% to FWW .
For the Z-exchange diagram, the jðπþπ0ÞI¼2i state

contributes about 7%. Although with Mπ ≈ 420 MeV,

(a) (b)

(c) (d)

(e) (f)

FIG. 1. From top to bottom: quark and lepton contractions for
W-W, connected and disconnected Z-exchange diagrams. The
four dotted arrows point to possible locations for the Z-exchange
vertex. The operator labels are defined in Ref. [6]. A few,
illustrative gluon lines are also shown.
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the contribution of this state to an exponentially growing,
unphysical term or to finite-volume corrections is irrel-
evant, this state could cause significant systematic effects
for a calculation at the physical pion mass.
As described above, we have also evaluated the dis-

connected diagrams. Although the result is noisy, the size
of the disconnected diagrams is only 3% of the connected
diagrams. Thus, including the disconnected diagrams will
not affect the statistical precision of our result.
Local operator.—The matrix element of the local oper-

ator Qlat
0 is related to the matrix element of the conserved

vector current between a kaon and pion and can be
determined from Kl3 decay without reference to lattice
QCD. (Of course, for our unphysical kinematics a lattice
calculation is needed.) Here we will focus on the coefficient
of this operator, specifically the contributions to this
coefficient from the terms in the third and fourth lines of
Eq. (3): the terms that renormalize the bilocal lattice
operator discussed above.
As discussed in detail in Ref. [6], the coefficient

Xlat→RI
AB ðμRI; aÞ, which converts the lattice bilocal operator

into one defined in the RI-SMOM scheme can be deter-
mined from a nonperturbative calculation of an off-shell,
Landau-gauge-fixed Green’s function of five operators: the
four quark fields s̄, d, ν, and ν̄ carrying nonexceptional,
external Euclidean momenta and the sum of the operators
appearing in the second and third lines of Eq. (3). We use
the external four-momenta:

ps̄ ¼ ðξ; ξ; 0; 0Þ; pd ¼ ðξ; 0; ξ; 0Þ;
pν̄ ¼ ð0;−ξ; 0;−ξÞ; pν ¼ ð0; 0;−ξ;−ξÞ; ð5Þ

where −ps̄, pd, −pν̄ and pν are incoming. The RI-SMOM
scale is μ2RI ¼ p2

f ¼ 2ξ2, for f ¼ s̄, d, ν, ν̄. The spin and
color indexes of the external fermion lines are contracted in
the same fashion as those in the operator Q0. The
coefficient Xlat→RI

AB ðμRI; aÞ is determined by requiring that
the Green’s function described above vanishes for the
momenta in Eq. (5) and a specific choice of μRI. The
resulting RI-SMOM-renormalized, bilocal operator now

has a well-defined continuum limit. In this way we obtain
Xlat→RI
AB ðμRI; aÞ for 1 GeV ≤ μRI ≤ 4 GeV.
Next we calculate the coefficient YRI→MS

AB ðμ; μRIÞ needed
to convert the RI-renormalized operator to MS renormal-
ization. This can be done directly from Eq. (3) by
evaluating both sides at the external momenta specified
in Eq. (5) at the scale μRI. The left-hand side is evaluated in
perturbation theory. On the right-hand side the first and
second lines are, in principle, nonperturbative but cancel
exactly because of the definition of the RI-SMOM scheme.
The remaining term, YRI→M̄S

AB ðμ; μRIÞ, is thus determined.
For simplicity, we choose μ ¼ μRI and evaluate Y pertur-
batively at one-loop. Knowing the Wilson coefficients X
and Y, the contribution of the local operator Q0 is easily
computed.
Results.—Since we use an unphysical value for the charm

quark mass, mMS
c ð2 GeVÞ ¼ 863ð24Þ MeV, we reevaluate

PPT
c of Eq. (2) using this unphysical value and the NNLO

formulas of Ref. [16]. Our results, including statistical errors,
are shown in Fig. 2. Here, Pc gives the complete charm
contribution to theKþ → πþνν̄ decay, normalized so that the
decay amplitude is the matrix element of the operator
αGFλ

5=ð2π ffiffiffi
2

p
sin2 θWÞPcQ0, where α is the fine structure

constant,GF the Fermi constant, and θW theWeinberg angle.
This description neglects the dependence of the decay
amplitude on the Dalitz variables s and Δ, which will be
small for our kinematics.
We show results from theW-W diagrams, the Z-exchange

diagrams, and their total in the left, center, and right panels.
First, as thegrayband,weplot the latticematrixelement of the
bilocal operator with only the multiplicative renormalization
of the individual four-Fermi operators included. Second, as

TABLE I. Resulting scalar amplitudes for the W-W and Z-
exchange diagrams. All the results are shown in lattice units (in
units of 10−2). The scalar amplitude FWW is evaluated at
ðΔ; sÞ ¼ ð0; 0Þ, FZþ at s ¼ 0 and FZ

0 at s ¼ ðMK −MπÞ2.

Scalar amplitude Contribution from state jni
FWW type 1 −1.118ð26Þ −1.138ð4Þ jlþνi
FWW type 2 9.29(14) 0.657(5) jπ0lþνi
FZ;conn
þ ð0Þ 2.133(32) � � �

FZ;conn
0 ðsmaxÞ 2.109(25) 0.1526(10) jðπþπ0ÞI¼2i

FZ;disc
0 ðsmaxÞ 0.060(12) � � �

1 1.5 2 2.5 3 3.5 4
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0
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0.25

W-W
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µ

RI
 = µ

MS
  [GeV]

-0.05

0

0.05

0.1

0.15

0.2

0.25
Unrenormalized
RI-renormalized

P
c
 - P

c

PT

P
c

Z-exchange

1 1.5 2 2.5 3 3.5 4
-0.05

0

0.05

0.1

0.15

0.2

0.25

W-W + Z-exchange

FIG. 2. W-W and Z-exchange diagram results, and their total,
shown from left to the right. The gray bands show the amplitude,
normalized as in Eq. (2), from the unrenormalized, bilocal
operator. The red circles indicate the RI-renormalized, bilocal
contribution. The blue diamonds give the total charm contribution
Pc while the green squares show the difference between the
lattice and perturbative results, Pc − PPT

c .
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red circles, we show the matrix element of the bilocal
operator, now normalized in the RI-SMOM scheme. The
short distance subtraction has introduced a dependence on
μRI ¼ μMS. (The local operators are renormalized at the fixed
scale μMS ¼ 2.15 GeV.) Next, we plot our complete result,
Pc as blue diamonds. Finally, as green squares we show
Pc − PPT

c , the difference between our complete lattice result
and the result of perturbation theory PPT

c described above.
The results from our exploratory lattice calculation with

unphysical charm, down and up quark masses are

Pc ¼ 0.2529ð�13Þð�32Þð−45Þ
Pc − PPT

c ¼ 0.0040ð�13Þð�32Þð−45Þ; ð6Þ

where the first uncertainty is statistical and the second is the
systematic uncertainty arising from the scale dependence as
μ varies between 1 and 3 GeV. The third quantity is an
estimate of finite-volume errors. With Mπ ≈ 420 MeV,
only the jπ0eþνi state can cause such effects, whose size
is determined from the formulas in Ref. [6]. The use of 800
configurations and unphysically heavy up and down quarks
yields a subpercent statistical error for Pc. The small size of
Pc − PPT

c results from a large cancellation between the
W-W and Z-exchange amplitudes. It is important to
determine whether such a large cancellation persists for
physical quark masses since, for example, if only the W-W
piece were present the predicted branching ratio would
decrease by 6%.
Conclusion.—The rare decay Kþ → πþνν̄ is a promising

process to reveal new physics both because of its small size
and the accuracy with which the dominant, short-distance
parts can be computed in the standard model. While the top
quark alone contributes 50% of the branching ratio,
amplitudes containing the much lighter charm quark do
appear in the other 50%. However, at leading order most of
this charm contribution comes from the short-distance-
dominated logarithm, lnðM2

W=m
2
cÞ ≈ 8.4, suggesting that

long-distance effects may give only 10% of the charm
contribution or 5% of the branching ratio.
Since such estimates are necessarily uncertain [for

example, the lnðM2
W=m

2
cÞ piece is reduced by a factor of

2 when all leading logarithms are included] and the NA62
experiment plans to measure this branching ratio to 10%, a
direct lattice QCD calculation of these long-distance effects
is well motivated. The exploratory calculation presented
here demonstrates that this is possible.
Because of our unphysical quark masses, it is premature

to compare the difference between our result and the
perturbative calculation [5] given in Eq. (6) with the

phenomenological, long-distance correction δPc;u ¼
0.04ð2Þ of Ref. [4]. However, the techniques presented
here can be directly applied to a future, realistic calculation.
We expect that within four years, when adequate resources
become available, an accurate lattice calculation with
controlled systematic errors will be possible.
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