week ending

PRL 118, 251302 (2017) PHYSICAL REVIEW LETTERS 23 JUNE 2017

£

Limits on Spin-Dependent WIMP-Nucleon Cross Section Obtained
from the Complete LUX Exposure

D.S. Akerib,l’z’3 S. Alsum,4 H. M. Araujjo,5 X. Bai,6 Al Bailey,5 J. Balajthy,7 P. Beltrame,8 E.P. Bernard,g’10
A. Bernstein,11 T.P. Biesiadzinski,l’l3 E. M. Boulton,g’lz’10 P. Brais,13 D. Byram,m’15 S.B. Cahn,lo
M.C. Czalrmona-Benitez,16’17 C. Chan,18 A A. Chiller,14 C. Chiller,14 A. Currie,5 J.E. Cutter,19 T.J.R. Davison,8 A. Dobi,12
J.E. Y. Dobson,” E. Druszkiewicz,”! B. N. Edwards,'® C. H. Faham,'? S.R. Fallon,”* S. Fiorucci,''® R.J. Gaitskell,'
V.M. Gehman,'? C. Ghag,® M. G. D. Gilchriese,'> C. R. Hall,” M. Hanhardt,*'® S.J. Haselschwardt,'” S. A. Hertel,™>'*'°
D.P. Hogan,9 M. Hom,ls’g’10 D.Q. Huang,18 C.M. Ignarra,z’3 R.G. Jacobsen,9 W. Ji,l’z’3 K. Kamdin,9 K. Kazkaz,11
D. Khaitan,21 R. Knoche,7 N. A. Larsen,lo C. Lee,l’z’3 B.G. Lenardo,lg’11 K.T. Lesko,12 A. Lindote,13 M. L Lopes,13
A. Man.’:tlaysay,19 R.L. Mannino,24 M. FE Marzioni,8 D.N. McKinsey,9’12’10 D.-M. Mei,14 J. Mock,22 M. Moongweluwan,21
JLA. Morad,19 A. St. J. Murphy,8 C. Nehrkorn,”’* H.N. Nelson,17 F. Neves,]3 K. O’Sullivam,g’lz’10 K.C. Oliver—Mallory,9
K.J. Palladino,4’2‘3 E.K. Pease,9'12’10 L. Reichhart,20 C. Rhyne,18 S. Shaw,”’20 T. A. Shutt,l’3 C. Silva,13 M. Solmaz,17
V.N. Solovov,13 P. Sorensen,12 S. Stephenson,19 T.J. Sumner,5 M. Szydagis,22 D.J. Taylor,15 W.C. Taylor,18
B.P. Tennyson,'’ P. A. Terman,** D.R. Tiedt,” W. H. To,"***" M. Tripathi," L. Tvrznikova,”'*'* S. Uvarov,"
V. Velan,” J. R. Verbus,'® R. C. Webb,” J. T. White,”* T.J. Whitis,">> M. S. Witherell,'"* F. L. H. Wolfs,”'
J. Xu,11 K. Yazdani,5 S. K. Young,22 and C. Zhang14

(LUX Collaboration)

'Case Western Reserve University, Department of Physics, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
2SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94205, USA
*Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, California 94309, USA
4University of Wisconsin—-Madison, Department of Physics, 1150 University Avenue, Madison, Wisconsin 53706, USA
>Imperial College London, High Energy Physics, Blackett Laboratory, London SW7 2BZ, United Kingdom
SSouth Dakota School of Mines and Technology, 501 East St. Joseph Street, Rapid City, South Dakota 57701, USA
7University of Maryland, Department of Physics, College Park, Maryland 20742, USA
8SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
9University of California Berkeley, Department of Physics, Berkeley, California 94720, USA
Yyale University, Department of Physics, 217 Prospect Street, New Haven, Connecticut 06511, USA
"Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, USA
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
BLIP-Coimbra, Department of Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
14Um'versity of South Dakota, Department of Physics, 414E Clark Street, Vermillion, South Dakota 57069, USA
SSouth Dakota Science and Technology Authority, Sanford Underground Research Facility, Lead, South Dakota 57754, USA
16Pennsylvam'a State University, Department of Physics, 104 Davey Lab, University Park, Pennsylvania 16802-6300, USA
17University of California Santa Barbara, Department of Physics, Santa Barbara, California 93106, USA
"Brown University, Department of Physics, 182 Hope Street, Providence, Rhode Island 02912, USA
19Universiz‘y of California Davis, Department of Physics, One Shields Avenue, Davis, California 95616, USA
2ODepartment of Physics and Astronomy, University College London, Gower Street, London WCIE 6BT, United Kingdom
21University of Rochester, Department of Physics and Astronomy, Rochester, New York 14627, USA
22University at Albany, State University of New York, Department of Physics, 1400 Washington Avenue, Albany, New York 12222, USA
23University of Massachusetts, Department of Physics, Amherst, Massachusetts 01003-9337, USA
ATexas A&M University, Department of Physics, College Station, Texas 77843, USA
25California State University Stanislaus, Department of Physics, 1 University Circle, Turlock, California 95382, USA
(Received 8 May 2017; published 23 June 2017)

We present experimental constraints on the spin-dependent WIMP-nucleon elastic cross sections from the
total 129.5 kg yr exposure acquired by the Large Underground Xenon experiment (LUX), operating at the
Sanford Underground Research Facility in Lead, South Dakota (USA). A profile likelihood ratio analysis
allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of ¢, =
1.6 x 107 em? (6, = 5 x 1074 cm?) at 35 GeV ¢, almost a sixfold improvement over the previous LUX
spin-dependent results. The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.
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The existence of dark matter is now supported by a wide
array of astrophysical evidence, though the nature of its
composition remains a mystery. The hypothetical weakly
interacting massive particle (WIMP) is a compelling can-
didate, addressing both the observed astronomical phenom-
ena as well as shortcomings of the standard model of particle
physics (SM). The WIMP appears in many extensions of the
SM, including supersymmetry [1], extra dimensions [2], and
little Higgs theories [3]. In these models, WIMPs may
couple to SM particles mainly via scalar (spin-independent)
and axial-vector (spin-dependent) interactions. The Large
Underground Xenon (LUX) experiment, operating at the
Sanford Underground Research Facility in Lead, South
Dakota, is designed to detect such interactions through
the scattering of galactic WIMPs with Xe nuclei. The LUX
WIMP search program comprises two distinct exposures,
termed WS2013 and WS2014—-16. The combined data set of
both runs has been analyzed to produce world-leading limits
on the spin-independent (SI) WIMP-nucleon cross section
[4]. Here, we present the results for the spin-dependent (SD)
coupling of WIMPs to protons and neutrons.

LUX searches for WIMPs with a dual phase time
projection chamber (TPC), detecting energy depositions
through the resulting ionization and scintillation in the
target material. The active detector volume, containing
250 kg of liquid xenon (LXe), is monitored by two
horizontal arrays of 61 photomultiplier tubes (PMTs) each.
The bottom array sits underneath a cathode grid in the LXe,
while the top array looks on from above, in the gas phase.
An energy deposition in the active region generates prompt
scintillation photons as well as ionization electrons, which
drift upwards under the influence of an applied electric
field. The scintillation light is the first signal observed in
the PMTs (S1). The second signal (S2) corresponds to the
liberated charge: Ionized electrons travel vertically to the
liquid surface, where they are extracted into the gas phase
and accelerated by a strong electric field. This produces
additional vacuum ultraviolet photons via electrolumines-
cence. The S2 signal, originating close to the top PMT
array, localizes the interaction in the (x,y) plane. Addi-
tionally, the time delay between S1 and S2 gives the depth
below the liquid surface, thereby allowing for full 3D
position reconstruction. Position information is crucial
for defining a fiducial volume, excluding background
events that occur near the TPC walls. Further discrimina-
tion between WIMP signals [nuclear recoils (NRs)] and
Compton or beta backgrounds [electron recoils (ERs)] is
achieved using the S2 to S1 ratio.

As discussed in Ref. [4], the recent WS2014—16 data set
was collected under substantially different detector con-
ditions than WS2013: The electric drift field in the active
volume featured spatial nonuniformities that evolved slowly
over the course of the exposure. In particular, a significant
radial component of the field was observed, as well as a
vertical gradient in field magnitude. As a consequence of

this field symmetry deformation, electron drift trajectories
were bent radially inward, complicating the position
reconstruction process. Though a similar phenomenon
was seen in WS2013, the effects in WS2014—16 were more
severe in magnitude, azimuthal distortion, and time depend-
ence. For example, in WS2014-16, an ionized electron
originating near the edge of the cathode at a radius of
~24 cm would reach the liquid surface ataradius of ~10 cm
(as opposed to ~20 cm in WS2013). In addition to affecting
electron drift paths, the field asymmetry introduced spatially
varying charge and light yields in the LXe. This is a result of
the recombination physics of electron-ion pairs—more
electrons (and thus fewer photons) will escape an interaction
taking place in aregion of greater field strength. As such, the
boundaries of the bands populated by ERs and NRs in §1-52
space vary slightly as a function of the event position (and, to
a lesser extent, the calendar date).

A rigorous calibration regimen was established to address
the challenges presented by the unique field geometry in the
WS2014-16 analysis. Weekly 3*™Kr injections [5-7], in
conjunction with periodic injections of tritiated methane [8],
enabled the separation of electric field effects from the usual
geometric effects typical of TPC detectors (i.e., spatial light
collection efficiency and electron lifetime). Furthermore,
83mKr data were used to tune a 3D electrostatic model of
the detector, built with the COMSOL Multiphysics package [9].
The electric field maps produced from this effort allowed for
the time-dependent translation between the true event
position and the position inferred from the observed S2.

NR calibrations were performed with neutrons from a
deuterium-deuterium (DD) fusion generator [10,11]. This
technique, pioneered by LUX following the WS2013 run,
was employed throughout the WS2014—-16 exposure to
monitor the detector’s expected response to signal events.
ER calibrations were obtained with tritiated methane,
where the beta decays of tritium (end point 18.6 keV)
give an excellent high statistics characterization of ER
background events [8].

This analysis combines the WS2013 and WS2014-16
data sets in search of spin-dependent scattering between
WIMPs and Xe nuclei. The WS2013 exposure was taken
between April and August of 2013, totaling 95 live days
with a fiducial mass of 145 kg [12]. A simple set of
selection cuts were applied to the data, leaving 591 events
in the region of interest. This data set was previously
analyzed to set SD WIMP-nucleon cross section limits [13].
The WS2014-16 data set was subjected to similar cuts and,
furthermore, featured a blinding protocol wherein fake
WIMP events (“salt”) were injected into the data stream.
A full discussion of these data quality and selection cuts as
well as the salting scheme can be found in Ref. [4]. In both
runs, cuts were designed to select low-energy events with a
single S1 followed by a single S2. The net effect on NR
detection efficiency is illustrated in Fig. 1, which shows
the exposure-weighted efficiency of both WS2013 and
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FIG. 1. LUX total efficiency (black curve), averaged over the

entire exposure. NR model uncertainties are illustrated by the
gray band, indicating +1¢ variation. The vertical dashed line
represents the analysis threshold of 1.1 keV (the lowest DD
calibration point), below which we conservatively take the LUX
efficiency to be zero. Sample WIMP spectra are plotted in color,
with values corresponding to the right-hand y axis. dru is the
differential rate unit (events kg=' d~'keV~'), and the spectra
have each been calculated with WIMP-nucleon cross
section = 1 pb. Spectra for WIMP-proton and -neutron scatter-
ing are given by the red and blue curves, respectively, for three
WIMP masses: 5 (dotted curves), 50 (dash-dotted curves), and
1000 GeV ¢~2% (dashed curves). Structure functions from Ref. [14]
are used for this calculation.

WS2014-16 (black line, left axis scale). Efficiencies are
calculated by applying analysis cuts to simulated NR
events. Also plotted on the same energy scale are sample
recoil spectra from SD WIMP-nucleon elastic scattering
(right axis scale).

The spin-dependent coupling between WIMPs and sea
quarks within target nucleons is evaluated using the
effective field theory (EFT) due to the nonperturbative
nature of the strong force. As in Ref. [13], we use the
calculations made with one-body (1b) and two-body (2b)
WIMP-quark scattering presented in Ref. [14]. The differ-
ential cross section derived is

- 2
d— %SA(C])7 (1)

dg* (27 +1
where G is the Fermi constant, J is the ground state
angular momentum of the nucleus, v is the WIMP velocity,
and S,(g) is the nontrivial momentum-dependent axial-
vector structure factor. In the zero momentum transfer limit,
it reduces to

2J+1)(J+1)
4rJ
x [(a, +8a,)(S,) + (a, +8a,)(S,)[*. (2)

S4(0) =

The a,, , are WIMP-proton(neutron) coupling constants for
1b currents, and éa,, , account for the effects of 2b currents
[in the nomenclature of Ref. [14], da,, = +a,da;(0)].

(S,.) are the spin expectation values of the proton and
neutron groups in the nucleus. The case of “proton-only”
coupling (a, = 0) is so named because, in the 1b regime,
only the protons contribute to S,(0) (the same applies to
“neutron-only” with a, = 0). However, with the introduc-
tion of 2b currents, neutrons may be involved in a “WIMP-
proton” scattering event, changing this picture. Thus, for
target nuclei with unpaired neutrons such as '*’Xe and
131Xe, sensitivity is much greater in the neutron-only case
(since (S,,) > (S,)), though 2b currents allow for nonzero
sensitivity to a proton coupling. '>*Xe and 3!'Xe occur
naturally in xenon with respective abundances of 29.5%
and 23.7%.

The nonzero momentum transfer structure factors S, (g)
can be decomposed as

00(q) + So1(q) + S11(q),
00(q) = So1(q) + S11(q), (3)

Sp(q)

S
Sa(q) =S

where S;;(q) are the isovector or isoscalar components. Fit

parameters for these functions are listed for ?*Xe and '3'Xe
in Table IV of Ref. [14]. Using these, we can compute do/dE
and generate various SD WIMP-nucleon recoil spectra
(see Fig. 1). We assume a standard Maxwellian WIMP
velocity distribution near Earth with v, = 220 km/s,
Vese= 544 km/s, and p, = 0.3 GeV/cm?. To calculate the
average relative Earth velocity during the exposure, we
follow Ref. [15] to obtain (vgps)wsa03 = 245 km/s and
(Vobs)ws2014-16 = 230 km/s.

A two-sided profile likelihood ratio (PLR) statistic is
used to test signal hypotheses [16], whereby the complete
LUX data set is compared against a multichannel,
extended, unbinned likelihood function [17,18]. LUX data
are categorized into five “channels”: One corresponds to
the WS2013 exposure, and the remaining four represent
discrete time periods of relatively constant detector con-
ditions in the WS2014-2016 data set, termed “date bins.”
The simultaneous model is thus the product of each
channel’s likelihood, along with the nuisance parameter
constraints. Nuisance parameters, representing systematic
uncertainties in the model, are described in Ref. [4], as are
the components of the background model. Here, we review
some details of the model construction.

The signal and background probability distribution
functions (PDFs) for WS2013 are defined in four observ-
ables: corrected interaction radius and height, S1, and
log;o(S2) [12]. Uncorrected S2 position coordinates
{rs2, P51, 250} are used in WS2014-16, with the loss of
axial symmetry necessitating the introduction of the third
spatial dimension. ER backgrounds as well as the NR
signal are modeled by further subdividing the data into
segments of drift time. [A small NR background from 8B
solar neutrinos is also modeled with this technique.
Neutrons (muon-induced or from detector components)
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can also produce NR background events, though the
estimated rate is negligible [4,19].] For each date bin of
WS2014-16, calibration data are used to tune {S1,S2}
response models in four horizontal slices of the detector
(within which the field strength variation is acceptably
low). From these date- and depth-specific models, imple-
mented with the noble element simulation technique [20],
Monte Carlo (MC) data are generated to produce 16 ER and
NR PDFs. Spatial PDFs are built separately using MC
calculations from the Geant4-based [21] LUXSim [22] soft-
ware: Simulated event positions are transformed into the
observed S2 coordinate space via the 3*™Kr-derived field
maps, once for each date bin.

As in WS2013, the WS2014-16 data contain a back-
ground population that defies the ER and NR description.
Interactions occurring very near the TPC walls suffer
charge loss to the polytetrafluoroethylene panels, sup-
pressing the S2 signal. Since the position reconstruction
statistical uncertainty scales as S§2-1/2 these low charge
yield events are more likely to be misreconstructed as
taking place within the fiducial volume (because of the long
tail in their radial distribution). An empirical model is
constructed to describe this population using control
samples of the data set outside the region of interest.
More so than the other models, this “wall” model features
strong correlations between the position and pulse area
observables. For example, the width of the radial distribu-
tion is dependent on uncorrected S2, which is itself a
function of the corrected S2 and zg, observables used in the
PLR. Furthermore, in observed S2 position coordinates, the
radial position of the wall varies with {¢s», zs, }. The final
PDF is implemented as a finely binned five-dimensional
histogram in each date bin, via an extension of the
technique described in Ref. [23]. Specifics of the model
construction will be detailed in a forthcoming publication.

The full background model is found to be a good fit to the
combined data set. The data are consistent with the back-
ground-only hypothesis (PLR p = 0.35) when testing a
50 GeV ¢2 signal. As a further cross-check, the WS2013
and WS2014-16 PDFs are separately projected into one-
dimensional spectra for each observable. These are compared
to data with a Kolmogorov-Smirnov test, demonstrating
acceptable goodness of fit (p >0.05 and p >0.6 in
WS2013 and WS2014-16, respectively) [4,12]. Finding no
evidence for WIMP signals in the data, we proceed in setting
90% confidence level (C.L.) limits on the WIMP-nucleon
cross section, in the case of spin-dependent coupling.

For a given WIMP mass and choice of coupling type, the
PLR test statistic distribution is constructed at a range of
signal cross sections from MC pseudoexperiments gener-
ated with the RooStaspackage [24]. The p value of the
observed data is then calculated over this range, where by
definition the 90% C.L. upper limit is given by the cross
section at which p = 0.1. In using the raw PLR test statistic,
however, an experiment may benefit unreasonably from

background underfluctuations. To safeguard against setting
an upper limit at a cross section to which LUX is insensitive,
a power constraint [25] is imposed at —1¢ of the expected
sensitivity calculated from background-only trials (as in
Ref. [4]). Since the WS2013 limits were reported with an
overly conservative power constraint at the median expected
sensitivity, this combined result exhibits a stronger improve-
ment than suggested simply by the increase in exposure.

The advance in sensitivity can be seen in Fig. 2, which
shows cross section limits as a function of WIMP mass in
the cases of neutron- and proton-only coupling. The limits
from the combined LUX data are plotted as a thick black
line, labeled “LUX WS2013+WS2014-16". LUX is more
sensitive to the neutron-only scenario, owing to the
unpaired neutron in '**Xe and '3!'Xe nuclei, and sets a
minimum upper limit of 1.6 x 107 cm? at 35 GeV ¢72, a
nearly sixfold improvement over the previous WS2013
result. Indeed, among direct detection experiments, LUX is
world-leading in sensitivity to WIMP-neutron interactions.
Also shown are sample results from LHC searches,
interpreted as exclusions in the WIMP mass vs cross
section plane by assuming mediator coupling parameters
in a Z'-like simplified model [26,27]. Though strictly
model-dependent, these limits present strong constraints
below ~500 GeV, whereas the sensitivity of LXe TPCs
extends to much higher WIMP masses.

To contextualize these WIMP-neutron cross section
limits, regions of favored parameter space derived from
a seven-parameter minimal supersymmetric standard model
(MSSM7 [39]) are also indicated. These regions, newly
calculated [32] by the GAMBIT Collaboration [40—43], are
generated from scans of the MSSM?7, where constraints
from a suite of experimental results appear in the likelihood
functions. In particular, recent results from LUX [4] and
PandaX-II [44] are included. As such, the favored param-
eter space is appropriately just beyond the sensitivity of this
work (since the data set used here is the same as in the
SI analysis of Ref. [4], which is already taken into account
by the GAMBIT profile likelihood scan). Another region of
favored parameter space from a 2014 scan of MSSM-15
[33] is shown for comparison, illustrating the rapid advance
of the field and the contribution of direct detection searches
such as LUX.

In the proton-only scenario, high mass limits from this
result now coincide with those previously set by the
PICO-2L experiment. The recent limit from PICO-60 sets
the standard for proton-only sensitivity in direct detection,
bolstering the constraints from indirect searches performed
by the neutrino detectors IceCube and Super-Kamiokande.
CMS and ATLAS take g, (i.e., the coupling of quark type
q € {u,d,s,...} to the axial-vector mediator) to be uni-
versal and thus set equivalent limits on WIMP-neutron
and -proton cross sections (the curves are omitted in the
bottom panel in Fig. 2 for clarity). However, we note that,
in a more careful treatment of the simplified model,
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FIG. 2. 90% C.L. upper limits on the WIMP-neutron (top) and
WIMP-proton (bottom) cross section. Results from this analysis 0 010 020

are shown in thick black (“LUX WS2013+WS2014-16"), with
the range of expected sensitivity indicated by the green (1) and
yellow (20) bands. Solid gray curves show the previously
published LUX WS2013 limits [13]. Constraints from other
LXe TPC experiments are also shown, including XENON100
[28] and PandaX-II [29]. In the top panel, model-dependent
(axial-vector mediator with indicated couplings) LHC search
results are represented by dashed lines, with CMS [30] in light
blue and ATLAS [31] in dark blue. As calculated by a new profile
likelihood scan of the MSSM7 [32], favored parameter space is
shown as dark (lo) and light (26) peach regions; an earlier
calculation using the MSSM-15 [33] is shown in gray, with
analogous shading of confidence levels. In the bottom panel, the
DAMA allowed region (as interpreted in Ref. [34]) is shown in
pink (the analogous neutron-only region is above the bounds of
the plot). Such an interpretation is in severe tension with this
result, as well as the PICO-2L [35] and PICO-60 [36] constraints.
Selected limits from indirect searches at neutrino observatories
(Super-Kamiokande [37] and IceCube [38]) are plotted as dashed
lines.

renormalization group evolution of the couplings from the
LHC to the nuclear energy scale leads to a significant
isospin violation (see Refs. [45-47]).

The cases of neutron- and proton-only coupling fall on
the axes of the more general parameter space spanned by a,
and a,,. By following the prescription laid out in Ref. [48],
elliptical exclusions in this plane are made according to

FIG. 3. 90% C.L. exclusions on coupling parameters a, and a,
for 50 and 1000 GeV ¢~2 WIMPs. Ellipse boundaries are colored as
in Fig. 2: this result (thick black), LUX WS2013 (gray), PandaX-II
(purple), and PICO-60 (blue). Geometrically, Eq. (4) describes a
rotated ellipse when the sum is performed over multiple isotopes
with distinct 64 /o7, as is the case for LXe experiments. PICO-60
considers only '°F (for which (S,,) ~ 0) and thus sets limits only on
ap,. The innermost region (bounded by LUX and PICO-60)
represents parameter space not in tension with experimental data.
The model dependency of the LHC results is apparent in this plane,
as the CMS excluded region (shown as a green band) is restricted to
the a, = a,, line (see the main text for an important caveat). This
line is absent from the lower panel, since, in this treatment, CMS is
insensitive to WIMPs at the TeV mass scale. MSSM7 favored
regions from the GAMBIT scan are also shown, with a red contour
at the 20 level for visibility. The degeneracies assumed in the
MSSM7 Lagrangian lead to the tight correlation between a,, and @ ,.
This scan includes a range of possible WIMP masses (unlike the
mass-specific experimental exclusions) and thus appears identically
in each panel, noting the change in the axis scale. Additionally, the
scans include models with subdominant relic densities, for which
experimental limits are rescaled accordingly.

T

a a, \°
P4 1 > , (4)
Z( i fag) T
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where the sum is performed over target isotopes with mass
numbers A and o?(n) are the 90% C.L. upper limits on the

WIMP-proton(neutron) cross section, calculated individu-
ally from these isotopes. For the PICO-60 results, where
only the proton-only results are reported, limits are calcu-
lated according to Ref. [49]. Exclusions are shown in Fig. 3
for two choices of WIMP mass, highlighting the comple-
mentary experimental reach of LXe and fluorine-rich
detectors. The CMS results are also shown in this plane
as exclusions along the a,, = a,, line (since g, is assumed to
be the same for all quarks) [30,50]. Results from the
GAMBIT scans of the MSSM?7 are also displayed.

In conclusion, the complete LUX data set has been
analyzed to set limits on SD WIMP-nucleon scattering.
World-leading constraints are presented for neutron-only
coupling, complementing searches for particle production
at the LHC. Further complementarity with the PICO-60
result is achieved in the 2D a,-a,, plane. Future work will
investigate a more complete set of EFT interaction oper-
ators, beyond those that define the standard SI and SD
paradigm.
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