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We introduce an exact replica method for the study of critical systems with quenched bond randomness
in two dimensions. For the q-state Potts model, we show that a line of renormalization group fixed points
interpolates from weak to strong randomness as q − 2 grows from small to large values. This theory
exhibits a q-independent sector, and allows at the same time for a correlation length exponent which keeps
the Ising value and continuously varying magnetization exponent and effective central charge. These
findings appear to solve long-standing numerical and theoretical puzzles, and to illustrate the peculiarities
which may characterize the conformal field theories of random fixed points.
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Quenched bond randomness plays an interesting role
within the theory of critical phenomena. The Harris
criterion [1] says that when the specific heat critical
exponent α of the pure model is positive, weak randomness
is relevant in the renormalization group sense and drives the
system towards a new (random) fixed point (FP). For
weakly relevant randomness, perturbation theory can be
used to study these new FPs but, due to its approximate
nature, can hardly establish whether they possess distinc-
tive features with respect to those of nonquenched systems.
Looking for nonperturbative methods, attention turns to the
two-dimensional (2D) case, in which conformal field
theory (CFT) has provided an exact and essentially com-
plete characterization of universality classes of critical
behavior for pure systems. It is a fact, however, that no
CFT for 2D systems with quenched disorder has been
identified. On the other hand, conformal invariance for this
type of criticality is expected to apply to a larger spectrum
of models than in the pure case. Indeed, it has been argued
[2], and also rigorously shown for a large class of models
[3], that in 2D bond randomness softens first order phase
transitions into continuous ones.
The 2D q-state Potts ferromagnet has played a central role

in the studyof quenched bond randomness. Themodel can be
continued to real values ofq [4] and, in the pure case, exhibits
a phase transition which becomes first order for q > 4 [5].
Weak bond randomness, which, for the Ising case (q ¼ 2), is
marginally irrelevant [6] and unable to produce a new FP,
becomes relevant for q > 2. The perturbative analysis for
q → 2 yields a line of FPs with varying critical exponents
[7,8]. On the other hand,MonteCarlo simulations performed
at q ¼ 8, while confirming the softening of the transition,
found exponents consistent with Ising values [9], and a
similar conclusion was obtained from simulations at q ¼ 4
[10]. A simplified interfacial model [11] then indicated q
independence, at least for sufficiently large q’s, of the
interfacial free energy exponent μ (related to the correlation
length exponent ν), with a value numerically consistent with

the Ising one. The authors of Ref. [11] observed that their
analysis involves strong randomness and possibly yields a
line of FPs different from that studied perturbatively in
Refs. [7,8]. This possibility was also suggested in Ref. [12],
where a numerical transfer matrix study in the range
2 ≤ q ≤ 8, while finding a very weak q dependence for ν,
established a macroscopic deviation of the magnetization
exponent β from the Ising value at q ¼ 8. Meanwhile, the q
dependence of the effective central charge c0 had been found
numerically in Ref. [13]. Following numerical studies [14],
exact asymptotic values for the exponents at q ¼ ∞ have
beenproposed inRef. [15], particularly the Ising value ν ¼ 1.
In this Letter we introduce an exact replica method for

the study of renormalization group FPs of 2D systems with
quenched bond randomness. For the q-state Potts model,
we find that all the abovementioned results actually
correspond to the same line of FPs, for which the random-
ness strength grows from weak to strong as q − 2 grows
from small to large values. Remarkably, this critical line
possesses a symmetry-independent sector, and allows at
the same time for constant ν and q-dependent β and c0. The
peculiarity of these features makes less surprising that the
CFTs of random FPs have not been identified among those
solved so far.
We exploit the scale invariant scattering formalism

introduced in Ref. [16], where it was illustrated for the
cases of the pure q-state Potts and n-vector models. FPs
of the renormalization group for 2D statistical models
with short-range interactions are identified, directly in the
continuum limit, as scale invariant S-matrix solutions for
the underlying relativistic quantum field theories in
(1þ 1)-dimensional space-time. Relativistic invariance of
the quantum theory corresponds to isotropy of the statistical
system in the scaling limit. Scale invariance implies
massless particles which, in 2D, are right or left movers
with energy and momentum related as e ¼ �p. A 2D
peculiarity is that conformal invariance—which, for local
field theories, is implied by scale invariance—ensures the
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presence of an infinite number of integrals of motion
forcing the scattering to be completely elastic: the initial
and final states contain the same number of particles with
the same momenta. The only relativistic invariant in the
scattering of a right mover with a left mover is the center
of mass energy, which is dimensionful; scale invariance
and unitarity then imply momentum independence of the
amplitude. As a consequence, the unitarity and crossing
symmetry equations [17] take a simple form [16,18].
Different theories are distinguished by their internal

symmetries. The q-state Potts model [19], defined by the
lattice HamiltonianH ¼ −

P
hi;jiJijδsi;sj , si ¼ 1; 2;…; q, is

characterized by the Sq symmetry corresponding to per-
mutations of the q values (“colors”) that each site variable
si can take. For the pure ferromagnet (Jij ¼ J > 0) below
critical temperature the massive particle excitations of the
field theory describing the scaling limit are kinks Aαβ

(α; β ¼ 1; 2;…; q; α ≠ β) interpolating between pairs of
degenerate ground states [20]. The trajectory of Aαβ in
space-time corresponds to a domain wall separating a
region with magnetization α from a region with magneti-
zation β. At criticality, the q ferromagnetic phases coalesce
and there are no kinks, but massless particles Aαβ still
provide the correct degrees of freedom [16] and can be
thought as yielding boundaries between clusters of spins
with different colors. More generally, the particles Aαβ can
be shown to describe also antiferromagnetic cases (J < 0)
[21] and must be regarded as the basic way of representing
Sq symmetry in the scattering description. This symmetry
leaves four inequivalent two-body amplitudes S0, S1, S2,
and S3; they are shown in the upper part of Fig. 1, where the
index i must be ignored for the time being.
Quenched disorder is introduced regarding the couplings

Jij as identical random variables and averaging with respect
to them in the free energy − lnZ rather than in the partition
function Z. As usual, writing lnZ as limn→0ðZn − 1Þ=n
maps the problem onto the study of n → 0 coupled replicas
of the pure system. Within our scattering formalism,
this amounts to considering a theory with excitations
Aαiβi , where i ¼ 1; 2;…; n labels the different replicas.
Invariance under permutations of the replicas and of the

colors within each replica yields the seven amplitudes
S0; S1;…; S6 of Fig. 1; two-particle processes change the
colors of, at most, two replicas, and these are the only ones
we need to keep track of. Crossing symmetry relates the
amplitudes which are exchanged under exchange of time
and space directions as S0 ¼ S�0 ≡ ρ0, S1 ¼ S�2 ≡ ρeiφ,
S3 ¼ S�3 ≡ ρ3, S4 ¼ S�5 ≡ ρ4eiθ, and S6 ¼ S�6 ≡ ρ6, where
we introduced a parametrization in terms of ρ and ρ4 non-
negative, and ρ0, ρ3, ρ6, φ, θ real. The modulus square of an
amplitude gives the probability that the given initial state
scatters into the given final state. As a consequence, the
S matrix (i.e., the matrix whose entries are the scattering
amplitudes and are labeled by the initial and final states) is
unitary, a property that, in the present case, results in the
equations

ρ23 þ ðq − 2Þρ2 þ ðn − 1Þðq − 1Þρ24 ¼ 1; ð1Þ

2ρρ3 cosφþ ðq − 3Þρ2 þ ðn − 1Þðq − 1Þρ24 ¼ 0; ð2Þ

2ρ3ρ4 cos θ þ 2ðq − 2Þρρ4 cosðφþ θÞ
þ ðn − 2Þðq − 1Þρ24 ¼ 0; ð3Þ

ρ2 þ ðq − 3Þρ20 ¼ 1; ð4Þ

2ρ0ρ cosφþ ðq − 4Þρ20 ¼ 0; ð5Þ

ρ24 þ ρ26 ¼ 1; ð6Þ

ρ4ρ6 cos θ ¼ 0: ð7Þ

For example, Eq. (1) follows from the fact
that 1 ¼ hAα1γ1Aγ1α1 jSS†jAα1γ1Aγ1α1i ¼

P
j;βjhAα1γ1Aγ1α1 j

SjAαjβjAβjαjij2 yields jS3j2 for j ¼ 1, β ¼ γ, a term jS2j2
for j ¼ 1 and for each color β ≠ α, γ, and a term jS4j2 for
each replica j ≠ 1 and for each color β ≠ α. Equations (1)–
(7) reduce to those of the pure model [16] when n ¼ 1 and
the equations which still contain ρ4 and/or ρ6 are ignored.
Notice that q and n appear as parameters which can be
given real values. Notice also that ρ4 ¼ 0 yields n non-
interacting replicas since S4 ¼ S5 ¼ 0 and, due to Eq. (6),
S6 ¼ �1. We recall that, in one spatial dimension, scatter-
ing involves position exchange on the line, so that a
scattering amplitude equal to 1 (−1) corresponds to non-
interacting bosons (fermions).
At a generic instant of time, a two-particle excitation

divides the line into a left, a central, and a right region. We
call neutral (charged) the excitations for which the colors in
the left and right regions are equal (different). The neutral
combination

P
γi
AαiγiAγiαi scatters into itself with an

amplitude

S ¼ S3 þ ðq − 2ÞS2 þ ðn − 1Þðq − 1ÞS4; ð8Þ
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FIG. 1. Scattering processes corresponding to the amplitudes
S0, S1, S2, S3, S4, S5, and S6, in that order. Different latin indices
correspond to different replicas, and different greek letters for the
same replica correspond to different colors.
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which by unitarity is a phase. Similarly, the charged
combinations

P
γi
AαiγiAγiβi and AαiβiAαjβj þ AαjβjAαiβi

scatter into themselves with phases Σ ¼ S1 þ ðq − 3ÞS0
and σ ¼ S5 þ S6, respectively.
Passing to solutions, consider first the Ising case. With

two colors available, the amplitudes S0, S1, S2 are unphys-
ical, and the unitarity equations still containing ρ0 and/or ρ
after setting q ¼ 2 can be ignored. The remaining equations
give the solutions

ρ3 ¼ −1; ρ4 ¼ 0; ρ6 ¼ �1; ð9Þ

ρ3 ¼ 2 cos θ ¼ −
ffiffiffiffiffiffiffiffiffiffiffi
2 − n

p
; ρ4 ¼ 1; ρ6 ¼ 0; ð10Þ

where we took into account that, in 2D, the pure Ising
model is a free fermionic theory, so that we must have
S3 ¼ −1 for n ¼ 1; this eliminates the doubling related to
the fact that, given a solution of the crossing and unitarity
equations, another solution is obtained reversing the sign of
all amplitudes. The solution with ρ4 ¼ 0 corresponds, for
any real n, to n decoupled Ising FPs. The solution with
ρ4 ¼ 1 is defined for −2 ≤ n ≤ 2 and corresponds to
strongly coupled replicas; for n → 0, it can account for a
strong disorder FP such as the Nishimori point [22].
Back to q generic, we restrict to coupled replicas, i.e.,

ρ4 ≠ 0, and first consider the case in which Eq. (7) is solved
taking cos θ ¼ 0. Then Eq. (3) shows that ρ4 → 0 as q → 2;
namely, for q → 2, the decoupled solution (9) and Ising
critical exponents are obtained. We are then considering,
within an exact framework, the case studied perturbatively
for q → 2 in Refs. [7,8]. There exists and is unique a
solution defined for q ≥ 2, which then corresponds to the
line of critical points studied numerically in Ref. [12] in the
range 2 ≤ q ≤ 8. More precisely, this solution is defined for
q ≥

ffiffiffi
2

p
and, for n ¼ 0, reads

cos θ ¼ ρ0 ¼ 0; ρ ¼ 1; ρ3 ¼ 2 cosφ ¼ −
2

q
;

ρ24 ¼ 1 − ρ26 ¼
ðq − 2Þ2ðqþ 1Þ

q2ðq − 1Þ : ð11Þ

Notice that ρ4 monotonically increases from 0 at q ¼ 2 to 1
as q → ∞, so that the solution interpolates from weak to
strong disorder. It superficially seems to correspond to an
ordinary q-dependent line of FPs, but it follows from
Eqs. (8) and (3) that, for cos θ ¼ n ¼ 0, the imaginary part
of S vanishes, so that S ¼ −1 for all q’s; on the other hand,
the phases associated with the charged channels have
ImΣ ¼ ρ sinφ and Imσ ¼ �ρ4, and they are q dependent.
This means that, remarkably, along the critical line (11), a
specific symmetry sector of the theory, the one to which the
combination

P
γi
AαiγiAγiαi belongs, becomes q independent

at n ¼ 0, i.e., only in the limit required for quenched
disorder.

To understand the consequences for critical exponents,
we need to consider the symmetry properties of the
operators in the q-state Potts model. The spin operator
has components σβðxÞ ¼ δsðxÞ;β − 1=q, β ¼ 1; 2;…; q;
what we say separately applies to each replica, and we
omit the replica index in order to simplify the notation. The
energy density operator εðxÞ is the most relevant operator
appearing in the operator product expansion σβσβ, and it is
Sq invariant. Both ε and σβ, when acting on the vacuum of
the field theory, create neutral excitations; indeed, charged
excitations, which interpolate between different colors,
are nonlocal with respect to the spin operator and are
created by disorderlike operators. In this respect, the
actual difference between ε and σβ is the following: ε is
Sq invariant and creates two-particle excitations AαγAγα

with the same α- and γ-independent coefficient; σβ creates
AαγAγα with different coefficients for β ¼ α, β ¼ γ, and
β ≠ α, γ. In the pure model, this difference makes more
difficult the determination of off-critical spin correlations
[23] with respect to that of energy correlations [24]. For our
present purposes, it implies that ε creates the combinationP

γAαγAγα as a whole and, as any other Sq-invariant neutral
operator, belongs to the sector of the theory which is q
independent along the critical line (11). The scaling
dimensions of these operators keep along the line the
Ising value they have at q ¼ 2; specifically, the exponent ν,
which is determined by the dimension of ε, keeps the value
1 along the line. Conversely, the operators which are not Sq
invariant have dimensions which change along the line;
specifically, the exponent β, which is determined by the
dimensions of σα and ε, is q dependent.
These findings indicate that the numerical [9,10] and

theoretical [11] studies pointing at a q-independent expo-
nent ν with Ising value, and the theoretical [7,8] and
numerical [12,25] results yielding a q-dependent exponent
β do actually correspond to the same critical line. The weak
variation of ν found in Ref. [12] always has the Ising value
1 within error bars, and the perturbative expansion of
Refs. [7,8] yields ν ≈ 1.02 if evaluated at q ¼ 3, a result
still very close to the Ising value. The reason why the latter
result is reliable is that the actual expansion parameter is the
deviation of ν from the Ising value in the pure models, and
this is still small at q ¼ 3. The suggestion of Refs. [11,12]
that the strong randomness, large q analysis of Ref. [11]
and the weak randomness, q → 2 analysis of Refs. [7,8]
correspond to different critical lines turns out to be
unnecessary: the same critical line (11) can account for
constant ν and varying β, and it interpolates from weak to
strong randomness as q − 2 grows from small to large
values. The value ν ¼ 1 proposed in Ref. [15] at q ¼ ∞
also agrees with our result. At first sight, the constance of ν
appears to be incompatible with the q-dependent effective
central charge c0 found numerically in Refs. [12,13].
Indeed, the central charge c is related to the stress-energy
tensor, and then to the Sq-invariant sector responsible for
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the q independence of ν. However, for systems with
quenched disorder, the quantity measured from the finite
size dependence of the free energy [26,27] is the effective
central charge c0 ¼ ∂ncðnÞjn¼0. Since the Sq-invariant
sector of the theory becomes q independent only at
n ¼ 0, c0 is q dependent, in agreement with the numerical
results. The central charge itself is limn→0n=2 ¼ 0 at the
decoupling point q ¼ 2, and it keeps this value along
the line.
When Eq. (7) is solved taking ρ6 ¼ 0, Eq. (6) implies

that ρ4 ¼ 1 and strong coupling solutions are obtained
which reduce to Eq. (10) for q ¼ 2. Among these, only two
are defined for q ≥ 2 (and actually for all q’s), and for
n ¼ 0 have

ρ0 ¼ ρ6 ¼ 0; ρ ¼ ρ4 ¼ 1; ρ3 ¼ 2 cosφ ¼ −
ffiffiffi
2

p
;

ð12Þ

and θ determined by Eq. (3); one of these solutions has
cos θ ¼ cosφ and is completely q independent. All solu-
tions of Eqs. (1)–(7) will be listed in Ref. [21]. It is worth
stressing that the inputs of our formalism are conformal
invariance and internal symmetry, Sq in the present case, so
that the space of solutions of the crossing and unitarity
equations contains the ferromagnetic case as well as (lattice-
dependent) antiferromagnetic and mixed realizations.
It was shown in Ref. [16] for the pure model how the

scattering formalism essentially contributes to a self-
contained field theoretical determination of the exponents,
in a context in which sufficient insight is available about the
underlying CFT. On the other hand, the results of this Letter
say that the CFTs of quenched random criticality may
admit symmetry-independent sectors and are of a peculiar
type; those we are providing are the first exact properties.
In perspective, it should be possible to gain further insight
on the conformal properties and, through the combination
with the scattering solution, to determine the non-Ising
exponents along the lines of Ref. [16].
Since the formalism is generally applicable in 2D, we

consider as a further illustration the case of the XY model.
The corresponding symmetry Oð2Þ ∼Uð1Þ is represented
by a pair of particles A and Ā with Uð1Þ charges 1 and −1,
respectively. Writing the amplitudes for the scattering
processes allowed by charge conservation and considering
n replicas, one obtains a system of unitarity equations
which coincides with Eqs. (1)–(7), with q ¼ 3 and Eq. (5)
omitted (S0 is unphysical for q ¼ 3). The reason for this
coincidence is that the permutational group S3 amounts to
Z3 cyclic permutations times a Z2 reflection. As a conse-
quence, the Potts excitations Aαβ admit the identifications
Aα;αþ1ðmod 3Þ ≡ A, Aα;α−1ðmod 3Þ ≡ Ā, which map the three-
state Potts amplitudes onto the Uð1Þ amplitudes; crossing
and unitarity then yield the same equations. It is worth
stressing that this coincidence does not extend to critical

exponents. The XY spin operator is Uð1Þ charged and
creates charged excitations; it clearly differs from the Potts
spin operator σα. These operators, as well as the energy
operators, are discussed in relation to the scattering
formalism in Refs. [16,18] for the pure models.
Having understood that we can refer to the Potts

equations with q ¼ 3, first consider the pure case, i.e.,
n ¼ 1. Since Eq. (4) fixes ρ ¼ 1, Eq. (1) gives ρ3 ¼ 0. Then
Eq. (2), which reads ρ3 cosφ ¼ 0, is identically satisfied.
Since Eq. (3) plays no role in the pure model, we see that φ
remains as a free parameter labeling a critical line in the
Uð1Þmodel. This is the line of FPs onto which the pure XY
ferromagnet renormalizes below the Kosterlitz-Thouless
[28] transition temperature TKT. Scale invariance below
TKT forbids a spontaneous magnetization and leads to
power-law decay of correlations (“quasi-long-range
order”), which is consistent with the absence of sponta-
neous breaking of continuous symmetries in two dimen-
sions [29,30]. When passing to interacting replicas
(ρ4 ≠ 0), Eq. (1) requires that n < 1. The solutions are
the q ¼ 3 case of those discussed for the Potts model, and
they do not admit free parameters, meaning that the only
critical line is that corresponding to noninteracting replicas.
Since the pure model is already unable to order, the FPs that
the equations yield at n ¼ 0 are not expected to provide a
positive temperature transition point for the random bond
XY ferromagnet. These solutions, however, can account for
elimination of quasi-long-range order by sufficiently strong
bond disorder, as found within a strong coupling approxi-
mation in Ref. [31].
In summary, we have shown how properties of 2D

systems with quenched bond disorder can be studied
exactly, directly in the continuum limit and at criticality,
within the framework of scale invariant scattering theory.
For the q-state Potts model, our analysis has shown that
there is a line of FPs along which the disorder strength
vanishes at q ¼ 2 and then increases continuously with q,
and it has revealed a mechanism allowing the exponent ν
and the central charge to stay constant while β and the
effective central charge vary. These unusual features of the
theory account for numerical and theoretical results that
had not all seemed compatible with each other.
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