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When a semiflexible chain is confined in a narrow cylindrical tube, the formation of a polymer hairpin is
a geometrical conformation that accompanies an exponentially large local free energy and, hence, is a
relatively rare event. Numerical solutions of the hairpin distribution functions for persistence-length-to-
tube-radius ratios over a wide range are obtained in high precision, by using the Green’s function approach
for the wormlike-chain model. The crossover region between the narrow and moderately narrow tubes is
critically investigated in terms of the hairpin free energy, global persistence length, mean hairpin-tip
distance from the tube axis, and hairpin-plane orientational properties. Accurate representations of the
solutions by simple interpolation formulae are suggested.
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Introduction.—The coarse-grained wormlike chain
serves as a foundation in statistical physics to support
our understanding of semiflexible polymer chains.
Originally presented in a discrete form [1], the model is
more conveniently described in a continuum form by
treating the polymer as a string of length L [2], which
nowadays can be used to exploit the similarity between the
mathematical structures of the polymer theory and the
quantum field theory [3,4]. The persistence length P is a
characteristic length scale in the model that describes the
orientation-orientation correlation length between polymer
segments along the chain, in free space [2,5].
When the chain is confined in a narrow tube of diameter

D, the orientation-orientation correlation is drastically
altered, and two length scales emerge: the deflection length
λ, which describes the average length of polymer segments
that are free from the wall interaction [6], and the global
persistence length g that as an effective step length
renormalizes the system into an one-dimensional random
walk on a large scale [7] (see Fig. 1). Experimental [8–14]
and theoretical [7,15–28] understandings of a DNA
molecule in various forms of confinement, for example,
heavily depend on these fundamental concepts. While the
dependence of λ on P and D is relatively well understood,
the precise theoretical understanding of the dependence of
g on these parameters remains unclear, despite its impor-
tance. This Letter aims at providing a thorough analysis of
the problem and reconciling the current mismatch between
the Monte Carlo data [27] and the only theoretical result in
the literature [7].
In the wormlike-chain (WLC) model, the quadratic

curvature of a polymer segment is penalized by a bending-
energy parameter directly proportional to P. As such, the
model gives rise to the leading contribution to a hairpin free
energy (reduced by β−1 ¼ kBT, where kB is the Boltzmann
constant and T the temperature), EmP=r, where 2r is the
distance between the two parallel stick segments and Em is

a numerical coefficient. On the basis of this model, Odijk
deduced an optimal hairpin shape, taking the theoretical
approach that ignores all hairpin shape fluctuations, in
terms of the mechanical-limit approximation [7], at the
same level as the classical-trajectory theory [29]. In
addition, he effectively took the translational entropy into
account, considering the degrees of freedom associated
with moving a hairpin on a tube cross section as the partial
contribution to the hairpin free energy F0, and arrived at
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where

~r ¼ ½ðE2
m þ 3Em

~DÞ1=2 − Em�=3: ð2Þ

In this Letter, all tilded symbols are scaled by P such that
~D ¼ D=P and ~r ¼ r=P. Following an argument for one-
dimensional dilute defects, he further deduced the global
persistence length

~gOdð ~DÞ ¼ α~r expðβFOdÞ; ð3Þ

where α is the ratio between l, half of the contour length of
the hairpin curve, and r. All these were proposed for small
~D, forming our previous theoretical understanding [7].
Here three basic questions are examined, based on the

numerical solutions to the exact, Green’s function formal-
ism of the WLC [3] over the entire ~D range, after a careful
treatment of the boundary condition to address the hard-
wall confinement [30]. First, how accurate are the Odijk
approximants, (1) and (2), to represent the WLC solution in
the small- ~D regime? When the expressions were compared
with recent Monte Carlo data calculated for g in the
moderately narrow channels, Muralidhar and Dorfman
discovered that ~gOd is off by 2 orders of magnitude in
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the ~D range (1,2); hence, they suggested that a constant
shift in βFOd is needed to remedy the difference for this
range, locally [27]. The exact solution to the problem for g
presented here for cylindrical-tube confinement agrees with
Muralidhar and Dorfman’s Monte Carlo data in order of
magnitude within the same ~D range. A lesser but unign-
orable problem is that Odijk made an algebraic mistake in
calculating Em and α [7]; a new derivation presented in
Supplemental Material [31], closely following his treat-
ment, yields the differences

EmðOdijkÞ¼1.5071…; EmðcorrectedÞ¼1.43557… ð4Þ

and

αðOdijkÞ ¼ 3.3082…; αðcorrectedÞ ¼ 4.4149…: ð5Þ

These corrections do affect the asymptotically small- ~D
regime where the leading term in (1) survives but do not
constitute a significant correction to the numerical values
of (3) in the moderate- ~D range (1,2).
We hence face the second question: Can one develop a

simple representation of the (exact) numerical solutions of
both βF and ~g for the entire ~D range, globally? As it turns
out, we well understand the ~D ≫ 1 asymptotic limit: βF ¼
ln 4 using a simple argument and ~g ¼ 1 by definition. As
demonstrated below, both
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are viable and accurate representations of the exact sol-
utions, where the numerical values of the constants are
A0 ¼ 1.0410, A1 ¼ −0.6046, A2 ¼ 1.2150, B0 ¼ 1.2907,
B1 ¼ −1.4449, and B2 ¼ 5.9560. The coefficients of the
logarithmic terms in these expressions, −3=2 and −1=2, are
maintained here according to Eqs. (1)–(3).
Finally, are there any other statistical properties that we

can use for a better understanding of hairpin conforma-
tions? Discussed below are the distribution function of the

distance between the tube axis to the hairpin tip (i.e., the
point on the hairpin where the polymer makes aU turn) and
the orientational distribution of the hairpin planes. These
enable a more clear-cut physical picture beyond the
entropy-depletion idea.
Hairpin free energy.—A number of physical properties

of the WLC can be accessed through the reduced Green’s
function qðr;uÞ, also named the “propagator”; it describes
the probability of finding one terminal end of a polymer in
the vicinity of a spatial point described by the positional
vector r and with a tangent vector pointing in a direction
described by a unit vector u. The properties of the other end
do not matter provided that an extremely long polymer is
concerned (L ≫ g). Within this limit, the ground-state-
dominance approximation [32] is exact, such that qðr;uÞ is
the ground-state eigenfunction that satisfies [3,30]

−βμqðr;uÞ ¼ ½−2Pu · ∇rju þ∇2
u − 2PUextðr;uÞ�qðr;uÞ;

ð8Þ

whereμ, the ground-state eigenvalue, is the confinement free
energy per “Kuhn” segment of length 2P. Much previous
attention was placed on obtaining βμ ∝ ~D−2=3 in the Odijk
regime and understanding its relationship with λ [6,20,
33–41], by various theoretical and simulation methods
including directly solving the above equation [41]. The
external potential experienced by a unit contour length,Uext,
is always zero but is introduced here to calculate χ below.
Cylindrical coordinates are used here, in which the tube

axis is defined as the z axis with a unit vector ẑ. The
distribution function has a rotational symmetry about ẑ and
a translational symmetry along the ẑ; hence, one needs only
to take the distance to the axis, ρ, as the spatial dependence,
with the corresponding unit vector ρ̂ directed away from the
z axis [42]. An additional spherical coordinate system
containing polar and azimuth angles θ, φ is established for
u such that u · ẑ ¼ cos θ and u · ρ̂ ¼ sin θ cosφ. Special
attention must be paid to properly expressing the derivative
term u · ∇rju in cylindrical coordinates [30,43]. Then,
the five-variable function qðr;uÞ is represented by the
three-variable function qðρ; θ;φÞ. The unnormalized seg-
mental density distribution is found from fðr;uÞ ¼
qðr;uÞqðr;−uÞ, or fðρ;θ;φÞ¼qðρ;θ;φÞqðρ;π−θ;πþφÞ.
The probability function of finding a hairpin tip is given by

f0ðρ;φÞ ¼ fðρ; π=2;φÞ=2C; ð9Þ

where C ¼ R
π
0 dθ sin θ

R
2π
0 dφ

RD=2
0 dρρfðρ; θ;φÞ is the

normalization constant. The 1=2 factor takes into account
the fact that, out of all configurations that are described by
fðρ; π=2;φÞ, only 1=2 are hairpin tips, and the other 1=2
are inflection points. The hairpin free energy can then be
obtained from βF0 ¼ − ln½R dφ

R
dρρf0�.

The squares in Fig. 2(a) represent the numerical solutions.
The data in the limit ~D ≪ 1 converge to the first term in

FIG. 1. Sectional illustration of a tube of diameter D, which
contains two hairpins formed by the confined polymer segment.
The polymer makes a one-dimensional random walk along the
tube axis with an effective, long step length 2g.
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Eq. (6), 2Em= ~D, which is represented by the black solid line;
this reflects the physical picture that the dominating con-
tribution to βF0 is from the bending energy. In the large- ~D
regime, the polymer can be regarded as a flexible chain, and
all u dependence disappears, which yields βF0 ¼ ln 4
according to the above definition. The interpolation curve,
given in Eq. (6) and plotted as the red solid curve in Fig. 2,
asymptotically approaches this constant.
Global persistence length.—Formally, the mean-square

end-to-end distance along the tube axis can be calculated by
introducing a virtual external potential

Uext ¼ −
ϵ

P
ẑ · u ð10Þ

into (8), as suggested by Khokhlov and Semenov for the
liquid-crystal theory of wormlike polymers [44]. One can
then obtain

hR2
zi ¼ LPχ; ð11Þ

where χ is the susceptibility ∂hẑ · ui=∂ϵ evaluated at ϵ ¼ 0.
The calculation can be further simplified by a first-order
perturbation theory in ϵ, which splits (8) into two partial
differential equations [45]. The definition

~g ¼ 3χ=2ð1þ 2mÞ ð12Þ
is adopted here for a L ≫ g chain, where m ¼
½3hðẑ · uÞ2i − 1�=2 is the orientational order parameter
[28,46]. All technical details of the numerical treatment
can be found in Supplemental Material [31].
The numerical solution for ln ~g obtained this way is

displayed by unfilled circles in Fig. 2(b) in a logarithmic
plot. Note that the vertical scale is actually logðln ~gÞ. The
data can be well captured by the empirical equation, (7),
over the entire ~D range, which is plotted as the blue solid
curve. In the small- ~D limit, ln ~g approaches 2Em= ~D, and in
the large- ~D limit, ln ~g approaches 0 as g becomes P. For
comparison, the Odijk approximant (3) for ~g, plotted as the
green curves, with his and the corrected constants in (4) and
(5), are indeed off by orders of magnitude in the ~D range
(1,2), as noted in Ref. [27].
Hairpin conformations.—The solution of the Green’s

function provides further insights into how ~D controls
different types of hairpin conformations. For this purpose,
two distribution functions are examined together. The
normalized distributions of hairpin tips,

H

�
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4
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=
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ð13Þ

are illustrated in Fig. 3(a) and 3(b), based on which the
mean distances of the hairpin tips to the axis, hρi, are
determined and displayed in Fig. 3(c) for various ~D. To
measure the mean orientations of the tangent vectors at
hairpin tips, u, as a function of the tip-to-axis distance,

σ
�
2ρ
D

�
¼

Z
dφðcos 2φÞf0

�
2ρ
D

;φ
�
=
Z

dφf0
�
2ρ
D

;φ
�

ð14Þ
is considered. In the ideal case of isotropic projections of u
on a tube cross section, σ ¼ 0; in the other ideal case of a
strong directional distribution along ẑ × ρ̂, σ ¼ −1 (see
Fig. 3, inset). Figure 4 illustrates the profiles σð2ρ=DÞ for
various ~D. Two obvious features can be seen: at ρ ¼ D=2,
because of the wall presence σ ¼ −1 for all ~D, and at
ρ ¼ 0, because of the symmetry about the tube axis σ ¼ 0
for all ~D, all consistent with the physical intuition. What
comes as a surprise is the peak of hρi in Fig. 3(c) at ~D ≈ 2.
The hairpin conformations are discussed from large to
small ~D below.
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FIG. 2. Hairpin free energy βF0 and global persistence length g
as functions of the reduced tube diameter D=P. Common to the
two plots are dashed and solid black lines representing the
asymptotic behavior 2Em= ~D with Odijk’s and the corrected
values in (4), respectively. In plot (a), squares represent the
exact solutions for βF0 obtained in this work with the underlying
red curve plotted according to (6). The purple curves are (1) with
Odijk’s (dashed) and corrected (solid) Em values stated in (4). In
plot (b), open circles represent the exact solutions for ln g=P
obtained in this work with the underlying curve plotted according
to (7). The green curves are (3), which are produced with the
additional α values listed in (5): dashed for Odijk’s and solid for
the corrected. The filled circles are the Monte Carlo data for g=P
provided by authors of Ref. [27].
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The density profile for the asymptotic limit ~D ≫ 1 can
be analytically determined, as the orientation dependence
disappears; the hairpin planes at the tips display an
isotropic distribution without a bending energy penalty
[illustrated by blue and red arrows in Fig. 4(b)]; hence,
σ ¼ 0 in most ρ regions. The WLC model then reduces to a
two-dimensional Gaussian-chain model on the tube cross-
section plane, on which the normalized hairpin-tip distri-
bution can be analytically derived [47]:

Hð2ρ=DÞ ¼ 2J20ð2kρ=DÞ=J21ðkÞ; ð15Þ
where JnðxÞ is the Bessel function of order n and k ¼
2.40483… is the first root of J0ðkÞ ¼ 0. One can then
analytically determine 2hρi=D ¼ 0.4240…, which is
exactly the asymptotic limit of the numerical solutions
in Fig. 3(c) for large ~D.
In the first crossover region ð2;∞Þ, as ~D is lowered, more

directionally ordered hairpin tips start to show up near the
inner surface; this is particularly so in a system with ~D≳ 2,
reflected by the increasing range of ρ near the tube surface
with negative σ, shown in Fig. 4(a). As the bending energy
prefers a bigger hairpin loop, the geometric requirement
pushes the hairpin tips away from the tube axis and forces the
hairpin plane to bend [Fig. 4(c)]. The distributionHð2ρ=DÞ
in Fig. 3(b) is hence broadened from the profile at ~D ≫ 1
(dashed curve) to accommodate this pushing away.
Within the second crossover region, ~D ¼ ð10−1; 2Þ, the

increasing rigidity prefers the entire hairpin to be more
coplanar while maximizing the hairpin size. This tendency
now brings more hairpin tips to the tube axis. Those near
the tube surface are even more ordered, σ ∼ −1 (Fig. 4), but
become rarer events. The narrowing of the distribution
function Hð2ρ=DÞ [Fig. 3(a)] is the direct cause of this
requirement. This is a crossover range that are currently

accessible through Monte Carlo simulations [26–28] and is
probably most relevant in a real experimental setting. The
logarithmic correction term in (1) was an attempt to address
this region, in terms of the depletion entropy associated
with the translational degree of freedom of the hairpin tips,
which was estimated by the assumption that the hairpin
planes are fixed in parallel to ẑ [7]. The assumption,
however, underestimates the entropic contributions; for
systems where ~D ∼ 1, hairpin planes can undergo further
wobbling motion against the hairpin tips, shown schemati-
cally by the red arrows in Fig. 4(c), in addition to the
translational degrees of freedom shown by yellow and blue
arrows. Hence, quantities such as βF0 and ln ~g significantly
deviate from (1) and (3) in the second crossover region.
Finally, in the asymptotic limit ~D ≪ 1, which exists in

the range ~D < 10−1 according to our data, a hairpin loses
most shape fluctuations, and the distance between the
hairpin tip to the axis, ρ, is vanishingly small as the hairpin
configurations approach the classical-trajectory shape. One
expects that 2hρi=D follows the power-law scaling

2hρi=D ¼ γ ~D1=2ð ~D ≪ 1Þ ð16Þ

asHðxÞ asymptotically approaches a normal distribution of
ρ=D with a variation width hρi=D. The coefficient can be
estimated from the numerical solution presented in Fig. 3(c)

(a)

(b) (c) (d)

FIG. 4. (a) Parameter measuring the directional ordering of the
tangent directions of hairpin tips, σ, as a function of the hairpin
distance from the tube axis, as well as (b)–(d) examples of hairpin
configurations where the hairpin tips are labeled by blue circles.
Plots (b)–(d) correspond to the parameter regimes ~D ≫ 1, ∼1,
and ≪ 1, respectively.

(a)
(c)

(b)

FIG. 3. (a),(b) Hairpin-tip distributions as functions of 2ρ=D for
various ~D and (c) mean hairpin tip to axis distance hρi as a function
of ~D. The inset in (c) shows a hairpin tip specified by a blue circle
located at ρ with a unit vector u making an angle φ with ρ̂.
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by circles, γ ¼ 0.88� 0.04. The behaviors of both βF0 and
ln ~g are dominated by the leading bending energy term.
Summary.—In this study, the conformational properties

ofWLChairpins in a confining cylindrical tube are analyzed
through the numerical solution for the probability function.
In the first part, the discussion is geared towards clarifying
the confusion caused by the previous theoretical results for
the hairpin free energy and global persistence length; that the
Odijk approximants require modification in the crossover
region is demonstrated, and new accurate representations are
proposed for a wide range of D=P. In the second part, the
free energies associated with bending hairpin planes and
wobbling degrees of freedom are argued to be important,
changing the physical picture of hairpin conformational
properties based on the translational “depletion” entropy
assumption. Two crossover regions are identified, each
having different hairpin-plane properties. These predictions
should be directly verifiable by usingMonte Carlo methods.
The current work is for a phantomWLC. It paves theway for
the next step of including the excluded volume interactions
in the theory, which is an active research area where
Monte Carlo studies have just emerged [26–28] and pre-
vious scaling arguments exist [16,25].
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