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Block copolymer (BCP) melt assembly has been studied for decades, focusing largely on self-organized
spatial patterns of periodically ordered segment density. Here, we demonstrate that underlying the well-
known composition profiles (i.e., ordered lamella, cylinders, spheres, and networks) are generic and
heterogeneous patterns of segment orientation that couple strongly to morphology, even in the absence of
specific factors that promote intra or interchain segment alignment. We employ both self-consistent field
theory and coarse-grained simulationmethods tomeasure polar and nematic order parameters of segments in
a freely jointed chainmodel of diblockmelts.We show that BCPmorphologies have amultizone texture,with
segments predominantly aligned normal and parallel to interdomain interfaces in the respective brush and
interfacial regions of the microdomain. Further, morphologies with anisotropically curved interfaces (i.e.,
cylinders and networks) exhibit biaxial order that is aligned to the principal curvature axes of the interface.
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Block copolymer (BCP) melts assemble into a rich array
of periodic morphologies [1] depending on chain compo-
sition, architecture, and interactions [2–4]. Over the past
several decades, investigations of BCP assembly have
focused on equilibrium composition profiles of chemical
segments ϕαðxÞ (for component α) and their connection to
molecular architecture [5]. Periodically ordered morpholo-
gies break not only continuous translational symmetries of a
disordered melt but also its continuous rotational symmetry.
As a consequence, they necessarily possess orientational
order at both the scale of microdomain lattice and the
subdomain scale. Despite the extensive study of the spatially
ordered composition profiles of BCP and their now wide-
spread applications in nanotechnology [6], knowledge of the
orientational order of chain segments that underlies these
spatial patterns is conspicuously lacking.
In this Letter, we use self-consistent field (SCF) theory

and coarse-grained simulations to analyze intradomain
segment orientation patterns in BCP melts to understand
(i) in which directions constituent segments orient within
ordered microdomains, and (ii) how alignment varies with
BCP morphology. Our analysis is based on the simplest
models of flexible BCPs, which lack both explicit and
implicit orientational interactions between segments but,
nonetheless, exhibit generic textures of orientational order.
Studies of liquid-crystalline textures of small molecules
confined to volumes of differing micro- or nanosize shape
and topology (e.g., droplets [7,8] to 3D periodic networks
[9]) show that such textures are highly dependent on the
shape of the confining volume, orientational symmetries of

the ordered phases [10,11], and, crucially, the anchoring of
alignment at the confining surface [12]. Analogous align-
ment may be expected from the spontaneously formed
interface between unlike components, posing a basic ques-
tion: Do segments align parallel (homogeneous) or normal
(homeotropic) to interdomain surfaces? Curiously, SCF
studies of the nematic order parameter in phase-separated
mixtures of homopolymers show a generic tendency of
segmental alignment parallel to the interface over the
interfacial width [13–15], while the SCF prediction of the
polar order in BCP microdomains shows instead a normal
alignment more characteristic of a Smectic A-like order
[16,17]. Here, we show that both normal and parallel
segment alignment coexist generically within BCP micro-
domains, albeit in different spatial regions. We describe the
principles that control relative strengths and directionality
alignment in different BCP morphologies and in different
subregions of a given morphology. Perhaps most surprising,
we report the generic emergence of biaxial segment order in
morphologies with anisotropically curved interfaces.
We consider a freely jointed chain model of a diblock

copolymer melt [18], where chains possess NA ¼ fN and
NB ¼ ð1 − fÞN segments of A- and B-type monomers,
respectively, with equal segment length a and volume
ρ−10 . In the mean-field (or SCF) approximation, chain
conformations are encoded in end-distribution functions
qþðn;xÞ andq−ðn;xÞ, which describe the statistical weights
of disjoint sections of the chain from the respective A
(n ¼ 0) and B (n ¼ N) ends to reach x at the nth segment
[5]. Thus, the probability (per unit volume) of the nth
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segment of the diblock at x is ρðx;nÞ¼qþðn;xÞq−ðn;xÞ=Z,
where Z is the single-chain partition function Z ¼R
d3xqþðn;xÞq−ðn;xÞ. The mean-field scalar order param-

eters, volume fractions of A and B, follow directly from the
end distributions

ϕαðxÞ ¼
�
ρ−10

X
ν∈α

δðxν − xÞ
�

¼ V
N

Z
α
dnρðx; nÞ; ð1Þ

where ν ∈ α labels all segments of type α ¼ A orB. Because
of random-walk chain statistics [19], end distributions obey
the modified diffusion equation [5,20,21],

� ∂q�
∂n ¼ a2

6
∇2q� − wðn;xÞq�; ð2Þ

where wðn;xÞ ¼ ΘðNA − nÞwAðxÞ þ Θðn − NAÞwBðxÞ,
with wA=BðxÞ the spatially varying chemical potential field
for A or B generated by local segment (scalar) interactions
[22]. The chemical potential fields satisfy the mean-field
self-consistency condition wA=BðxÞ ¼ χϕB=AðxÞ þ ξðxÞ,
where Flory parameter χ describes the repulsive interactions
between unlike species, and the pressure field ξðxÞ acts
on both species to maintain constant density [i.e.,
ϕAðxÞ þ ϕBðxÞ ¼ 1]. The equilibrium states are determined
by solving Eq. (2) for spatially periodic patterns of ϕAðxÞ
and ϕBðxÞ optimized with respect to symmetry and unit cell
dimensions [21]. We employ the PSCF code [23] to compute
end distributions for diblock morphologies at fixed segre-
gation strengths χN and chain composition f.
The orientational order of segments in block copolymer

morphologies is described by two types of order param-
eters, both deriving from spatial derivatives of end dis-
tributions. A polar order parameter pαðxÞ tracks the
vectorial orientation of segments [16], since the A and B
ends are distinguishable. Assigning r̂α to the orientation of
segment α (directed from the A to B end),

pαðxÞ ¼
�
ρ−10

X
ν∈α

r̂νδðxν − xÞ
�

¼ V
N

Z
α
dnJðx; nÞ; ð3Þ

where the segment flux is given by J ¼ aðqþ∇q−−
q−∇qþÞ=ð6ZÞ. A nematic order parameter QαðxÞ—a
symmetric traceless, tensor—tracks the anisotropy of the
segments consistent with head-tail symmetry (or r̂α → −r̂α)
of alignment [24] (where i, j, k are spatial indices),

Qα
ijðxÞ ¼

�
ρ−10

X
ν∈α

�
ðr̂νÞiðr̂νÞj −

δij
3

�
δðxν − xÞ

�

¼ V
N

Z
α
dn

�
J ijðx; nÞ −

δij
3
J kkðx; nÞ

�
; ð4Þ

where J ij ¼ a2ðqþ∂i∂jq− þ q−∂i∂jqþ − ∂iqþ∂jq− −
∂iq−∂jqþÞ=ð60ZÞ (analogous expressions are derived in
the Supplemental Material [25] for the Gaussian chain
model). To test the SCF predictions, we perform molecular
dynamics (MD) simulations of analogous freely jointed
bead-spring chains, specifically using finitely extensible

nonlinear elastic bonds and the repulsive part of the
Lennard-Jones potential for all pairwise interactions [29].
The simulations do not rely on the mean-field approxima-
tion and capture intersegment correlation effects absent in
the SCF model. Phase separation is driven by increased
A-B repulsion strength ϵAB mapped to χAB as in Ref. [29]
(see the Supplemental Material [25] for details). We use a
Langevin thermostat and Nosé-Hoover barostat with pres-
sure 5ϵσ−3 initialized in an already microphase-separated
structure and allow the box dimensions to vary to equili-
brate the domain spacing [30]. The vector and tensor order
parameters are computed from bond-vector r̂α distributions
extracted from equilibrated configurations. Data are binned
by the distance from the center of mass of the lamellar or
cylindrical domains (see the Supplemental Material [25] for
details).
We first illustrate the basic features of “multizone”

textures in lamellar morphologies. Figures 1(b) and 1(c)
show SCF profiles of polar and nematic order for the A
segments in well-segregated lamella at f ¼ 0.5 and
χN ¼ 30. Turning first to the “brush” zone deep in the
A-rich domain (i.e., where ϕA ≈ 1), we find the intuitive
result of normal segment orientation (i.e., Smectic A-like).

(a)

(b) (e)

(c) (f)

(d) (g)

FIG. 1. (a) MD snapshot showing selected chains in lamellar
domains. Order parameter (left y axis) and volume fraction (black
curve, right y axis) profiles for A-block segments in f ¼ 0.5
lamella, with (b),(c) showing SCF results (χN ¼ 30) and (e),(f)
showing MD results (χN ¼ 80). (b),(e) show the normal com-
ponent of pA (parallel component is 0), and (c),(f) show the
normal and parallel components ofQA. Peak values of normal (d)
and parallel (g) components of polar and nematic order in f ¼ 0.5
lamella are plotted vs χN, with SCF results shown as curves and
MD results as open symbols.
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Defining the ∥ and ⊥ directions relative to the A-B
interface, the symmetry along the layer guarantees
pA
∥ ¼ 0, while the profile of pA⊥ is odd with respect to

the A-domain center, highlighting an outward splay of
chains away from the bilayer interfaces. In this region, the
nematic order shows similar uniaxial normal alignment
with QA⊥ > 0 consistent with brush extension away from
the A-B interface. The degree of alignment can be estimated
by a simple Langevin model of chains subject to a tension
≈kBTD=Na2, which represents the mean-field effect of the
intersegment pressure holding the free ends a distance
proportional to the domain width D from the interface:
pα⊥≈Dα=ðNαaÞ∼N−1=2ðχNÞ1=6 and Qα⊥≈ðDαÞ2=ðNαaÞ2∼
N−1ðχNÞ1=3. Here, strong-segregation theory gives Dα ∼
D ≈ ðχNÞ1=6N1=2a [31] leading to the asymptotic χN ≫ 1
power laws observed for peak order parameters in Fig. 1(d).
Turning now to the interfacial zone (ϕA ≈ ϕB ¼ 1=2), the

nematic order parameter in Figs. 1(c) and 1(f) reveals that the
segment alignment becomes tangential (i.e., Qα

∥ > 0 and
Qα⊥ < 0) near the interdomain boundary, implying that both
normal and tangential segment alignment coexist within
block copolymer domains, albeit at different spatial regions.
The tangential alignment at the interface, though arguably
less intuitive than normal ordering in the brush, is, none-
theless, a generic feature of the statistics of random walks at
a composition boundary, even in the absence of physical
interactions that promote (inter or intrachain) segment
alignment. Near a well-segregated interface, end-distribu-
tion functions become independent of n as ends and junction
points are rare, and according to Eq. (1) the segment
distributions become approximately ∝

ffiffiffiffiffiffiffiffiffiffiffiffi
ϕαðxÞ

p
[32,33].

The distribution of interfacial orientation follows directly
as the probability ρðx; r̂Þ of segment orientation r̂ at x that
any two (like) chain sections span from x − ar̂=2 to
xþ ar̂=2. In other words, the probability ρðx; r̂Þ is the
geometric mean of segment density at nearby points,
ρðx; r̂Þ≃ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϕðx − ar̂=2Þp
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕðxþ ar̂=2Þp

or ρðx; r̂Þ≃
ϕðxÞ expfða2=8Þðr̂ ·∇Þ2 lnϕg. As lnϕðxÞ necessarily
becomes non-convex at the interface along the normal
direction N [34], ρ⊥ðxÞ − ρ∥ðxÞ < 0 and fewer segment
orientations span perpendicular (from α-“rich” to “poor”
side), than parallel to the A-B interface, not unlike chains
near a “hard wall” boundary. The general form of the
nematic order parameter near a sharp interface follows from
inserting q� ∝

ffiffiffiffiffiffiffiffiffiffiffiffi
ϕαðxÞ

p
into Eq. (4),

Qα
ijðinterÞ ¼

a2

60
ϕα

�
∂i∂j lnϕα −

δij
3
∇2 lnϕα

�
ð5Þ

for lamella where ∂∥ϕα ¼ 0, in the strong-segregation limit
∂2⊥ lnϕα ∼ −Δ−2, where Δ ¼ að2=3χÞ1=2 is the interfacial
width [31]. Hence, the strength of tangential interfacial
alignment is independent ofN, scaling asQα

∥ ¼ −Qα⊥=2 ∼ χ,
confirmed for peak interfacial order in lamella in Fig. 1(g).

The profiles of polar and nematic order parameters from
MD in Figs. 1(e) and 1(f) clearly exhibit generic features of
the multizone texture predicted by SCF theory. This is
despite key microscopic differences between the simulation
and theory including (i) local packing constraints of finite-
sized spherical monomers in the simulation absent from the
SCF model, (ii) nonzero compressibility of the MD model
(interblock repulsion reduces interfacial density), while
SCF enforces constant local density, and (iii) the fact that
MD simulations use relatively low N ¼ 100–400 for
tractability, requiring relatively large χ for strong segrega-
tion, while the SCF implicitly considers the (strictly
Gaussian) limit of χ ≪ 1 (or N → ∞). Figures 1(d) and
1(g) show SCF and MD predictions are in closer agreement
for normal ordering in brush than for tangential alignment
at the interface, where bead-spring simulations show a
weaker alignment, presumably related to the fact that a ≳ Δ
for sufficiently large χ. However, we find that as N
increases (at fixed χN), the segment alignment in simu-
lations tends towards SCF predictions, consistent with the
approach towards N → ∞.
Moving to curved structures, we see that interface shape

has critical influence on the respective normal and tangen-
tial alignment zones. As block composition becomes
increasingly asymmetric, minority block domains tend to
form on the inside of the interface of increasing inward
curvature [35]. By simple geometry, this leads to a tendency
to relax the outer block length at the expense of extending
the inner block [36]. Accordingly, normal order increases
with a power of Dα, such that in minority (majority)
subdomains, normal alignment in brush increases
(decreases) with increasing interdomain curvature from
lamella→ double gyroid→ cylinders→ spheres, consistent
with the variation of peak QA⊥ in Fig. 2(a).
Considering alignment in the interfacial zone for mor-

phologies with anisotropically curved interfaces (i.e., cyl-
inders and tubular networks), in-plane alignment couples to
principal curvature axes as illustrated by the nematic order
profile of a cylinder morphology in Fig. 2(b). This coupling
follows from the nematic order parameterQα

IJ ≡ eI ·Qα · eJ
projected onto an orthonormal basis aligned to the tangent
plane (spanned by e1 and e2) and the interface normal
(N ¼ e1 × e2). Using Eq. (5) and the fact that domain
interfaces are isolevels of volume fraction with ∇ϕα ¼
ð∂NϕαÞN, the in-plane nematic order in the interfacial zone
is (see the Supplemental Material [25] for details)

Qα
IJðinterÞ≃ a2

60

�
−∂NϕαCIJ −

δIJ
3
ð∂2

Nϕα − j∂Nϕαj2=ϕα

− 2H∂NϕαÞ
�

for I; J ¼ 1; 2; ð6Þ

where CIJ ¼ N · ½ðeI ·∇ÞeJ� is the curvature tensor [37] of
the interface, andH ¼ ðC11 þ C22Þ=2 is themean curvature.
For anisotropic curved interfaces, the in-plane segment
order parameter is also anisotropic, with maximal alignment
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along either the direction of maximal or minimal curvature.
Taking e1 and e2 to be principal curvature directions, we
measure the in-plane alignment anisotropy ΔQ∥ ≡Q11 −
Q22 and findΔQ∥ ≃ −ða2=60Þðκ1 − κ2Þ∂Nϕα, where κ1 and
κ2 are principal curvatures. The surface curvature falls with
domain size as κ ∝ D−1, while j∂Nϕαj ∼ Δ−1, and the
interfacial anisotropy grows with NΔQ∥ ∼ ðχNÞ1=3 in the
strong-segregation limit [shown in Fig. 2(d)]. For cylindrical
domains of core radius Rc, where κ1 ¼ 0 and κ2 ¼ −1=Rc
(takingN to be outward), ∂Nϕα switches sign from negative
when α is the inner domain to positive when it is the outer
domain. Hence, not only are interfacial segments aligned to
the local curvature axes, but this alignment along the
principal directions of Q is distinct for core- vs coronal-
block segments at that interface. The peak interfacial
(ϕ ≈ 1=2) values of Q in cylinder phases show that core-
block segments align most strongly with the axial direction,
while coronal-block segments (at that interface) align most
strongly to the azimuthal direction [shown schematically in
Fig. 2(c)].
We note further that according to Eq. (6), tangential

ordering at an anisotropic interface is marked by biaxial
segment order, with three unequal eigenvalues of Qα (one
negative and two unequal positive values roughly aligned to
the normal and principal curvature directions of the inter-
face, respectively). Adopting methods developed to
describe biaxial phases of liquid crystals, we quantify
the degree of biaxiality [38,39] from the rotational invariant
ηα ≡ ½trðQ2

αÞ�3 − 54½detðQαÞ�2 that increases from zero as
eigenvalues of Q become unequal. In Fig. 3(a), we show
biaxiality (volume averaged) of the A segments hηAi in
competing diblock phases (at χN ¼ 30), indicating that
biaxial order is absent (present) for phases with isotropic
(anisotropic) in-plane curvature. The negative Gaussian
curvature of network interfaces [36] implies larger curva-
ture anisotropy (κ1 − κ2) and, hence, the largest segment
biaxiality. Figures 3(b)–3(d) show the complex pattern of

nematic order (as illustrated by the director field) in minor
tubular domains of the double gyroid. Notably, alignment
in the core brush and interfacial zone implies the formation
of a point (hedgehog) and meeting at the threefold junction
of three þ1 disclinationlike lines that thread along the
center of the tubular domains [40]. At the interface, locking
of the director to the curvature axes leads to the formation
of two −1=2 disclinations on antipodal points of the
threefold junction that localize the conflict with in-plane
order and Gaussian curvature of the interface.

0.2 0.4 0.6 0.8
0

2

4

6

(a) (b)

(c) (d)

FIG. 3. (a) Plot of volume-averaged biaxiality ηA ≡ ½trðQ2
αÞ�3 −

54½detðQαÞ�2 as a function of composition f for different
morphologies at χN ¼ 30. (b)–(d) show the 3D nematic director
field of the tubular minor domain of a DG network at f ¼ 0.33, in
the threefold region highlighted in (b). (c) shows the director
profile at the interface (ϕ ¼ 1=2), while (d) shows the profile
through a core section.

(a) (b) (c) (d)

FIG. 2. (a) Peak values of the normal component of nematic order parameter for A segments, NQA⊥ in bcc spheres (SPH), hexagonal
cylinders (CYL), double gyroid (DG), and lamellar (LAM) phases. Core (corona) reflects the location of the A block on the inner (outer)
side of the A-B interface. The maximum and minimum values along both [111] and [100] axes are shown for DG (see the Supplemental
Material [25]). (b) shows the nematic profiles for the A (core) and B (coronal) segments in the left and right panels, respectively, in the
CYL phase at χN ¼ 30 and f ¼ 0.3. Qaxi, Qazi, and Qrad label the respective axial, azimuthal, and radial components defined with
respect to the center axis of the cylinder with radial distance r shown in the (c) inset. In (c), the red and blue ellipsoids illustrate the
biaxial interfacial order for the core (A block) and coronal (B block) segments, respectively, where the axes dimensions reflect the
magnitude of Qα

ij. In (d), the peak values of ΔQ∥ ≡Qaxi −Qazi are plotted for the SCF results (solid lines) and MD simulations
(triangles) at f ¼ 0.25 for N ¼ 100.
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To conclude, while the degree of normal alignment of
brush segments increases inversely with chain length
(∼N−1=3 and ∼N−2=3 for polar and nematic order, respec-
tively), we find that tangential alignment at the interface is
independent of chain length and grows in proportion to χ.
This suggests that even in flexible diblocks, tangential
alignment approaches significant levels (Qij ∼ 1) in high-χ
systems [41,42]. Notably, the flexible chain model here
includes no orientational interactions between segments,
and, hence, the induced ordering within microdomains falls
outside of the Onsager description of lyotropic chain
alignment [43]. The texture exhibited by flexible diblocks
is a necessary reference point for studying orientational
order in systems with additional tendencies promoting
intrachain (i.e., persistence) and interchain segmental align-
ment [16,17,44–46]. For example, recent studies of BCPs
with chiral polymer blocks [47] suggest these systems may
be described by an additional preference of twisted (e.g.,
cholesteric) packing in the chiral microdomains [48–50], a
pattern of gradient orientation that competes with the
entropically favorable multizone alignment described here.
Finally, we note that segment alignment at anisotropic
interdomain surfaces may have key yet unexplored con-
sequences for behavior of functional BCPs; e.g., materials
where functionality emerges from the interface and
relies on directional processes (e.g., optical response,
charge transport) will exhibit a strong dependence on
core vs coronal placement of functional blocks.
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