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The photovoltaic reciprocity theory relates the electroluminescence spectrum of a solar cell under applied
bias to the external photovoltaic quantum efficiency of the device as measured at short circuit conditions. Its
derivation is based on detailed balance relations between local absorption and emission rates in optically
isotropic media with nondegenerate quasiequilibrium carrier distributions. In many cases, the dependence of
density and spatial variation of electronic and optical device states on the point of operation is modest and the
reciprocity relation holds. In nanostructure-based photovoltaic devices exploiting confined modes, however,
the underlying assumptions are no longer justifiable. In the case of ultrathin absorber solar cells, the
modification of the electronic structure with applied bias is significant due to the large variation of the built-in
field. Straightforward use of the external quantum efficiency as measured at short circuit conditions in the
photovoltaic reciprocity theory thus fails to reproduce the electroluminescence spectrum at large forward bias
voltage. This failure is demonstrated here by numerical simulation of both spectral quantities at normal
incidence and emission for an ultrathin GaAs p-i-n solar cell using an advanced quantum kinetic formalism
based on nonequilibriumGreen’s functions of coupled photons and charge carriers.While coincidingwith the
semiclassical relations under the conditions of their validity, the theory provides a consistent microscopic
relationship between absorption, emission, and charge carrier transport in photovoltaic devices at arbitrary
operating conditions and for any shape of optical and electronic density of states.

DOI: 10.1103/PhysRevLett.118.247702

Absorption and emission of light by a semiconductor
material are two physical processes that are related by the
fundamental laws of light-matter coupling. For a given set
of electronic states connected by an optical transition, the
two processes are described in terms of identical optical
matrix elements and joint density of electronic states
participating in the transition. In thermal equilibrium, the
principle of detailed balance dictates a vanishing net
transition rate. On these grounds, the absorption coefficient
has been related to the radiative lifetime of charge carriers
under nonequilibrium conditions [1], and to the local
emission spectrum at finite splitting of quasi-Fermi levels
[2]. In the first case, the absorption coefficient α determines
the prefactor B of the local rate of radiative recombination
RðrÞ ¼ BðrÞρnðrÞρpðrÞ=n2i via

BðrÞ ¼
Z

dEγαðr; EγÞn2rðrÞϕ̄bbðEγÞ; ð1Þ

where Eγ ¼ ℏω is the photon energy, ρnðpÞ and ni denote
the electron (hole) and intrinsic carrier densities, respec-
tively, nr is the local refractive index—approximated
as independent of energy—and ϕ̄bb ≡ 4πϕbb is the angular
integration of the vacuum black-body radiation
flux ϕbbðEγÞ ¼ E2

γ=ð4π3ℏ3c20ÞfBEðEγÞ, with fBEðEγÞ ¼
fexp½βEγ� − 1g−1 (β≡ fkBTg−1) the Bose-Einstein distri-
bution function at emitter temperature T. In the second
case, a generalization of the Planck emission law is given
by the following rate (per unit volume):

RGPðr; Eγ;ΔμÞ ¼ αðr; EγÞD̄γ
0ðr; EγÞ

c0
nrðrÞ

fBEðEγ − ΔμÞ;

ð2Þ
where D̄γ

0 is the angle-integrated density of photon states
and Δμ denotes the quasi-Fermi level splitting. In Ref. [2],
this result was derived under the assumption of unrestricted
optical transitions (no momentum selection rule), of qua-
siequilibrium occupation described by Fermi statistics with
distinct and constant (bulk) quasi-Fermi levels for electrons
and holes, and of an optically homogeneous medium
exhibiting a photon density of states for free field modes,
D̄γ

0ðr; EγÞ ¼ ðE2
γn3rÞ=ðπ2ℏ3c30Þ. The two cases coincide if

Boltzmann statistics are used for the carrier densities in
Ref. [1] and substituted for the Bose factor in Eq. (2), which
is often found in literature, though strictly valid only at high
temperature and far from degeneracy. Expression (2)
constitutes one of the main ingredients of the photovoltaic
reciprocity theory as formulated in Ref. [3], which relates
the luminescent emission of a solar cell under applied bias
voltage to the external quantum efficiency QPV of the same
device under illumination, and which has found widespread
application in luminescence-based characterization of pho-
tovoltaic materials, cells, and modules [4–7]. For the case
of an applied electrical bias V and a QPV that is determined
at normal incidence and short circuit conditions (V ¼ 0),
this reciprocity relation reads [3]

ϕ⊥
emðEγ; VÞ ¼ Q⊥

PVðEγÞϕbbðEγÞ
�
exp

�
qV
kBT

�
− 1

�
: ð3Þ
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The limits for the applicability of the photovoltaic
reciprocity relation as encoded in Eq.. (3) have been
investigated for different situations where some of the
basic assumptions—such as the superposition principle or
the Donolato theorem [8]—do not hold [9–12]. For
instance, in Ref. [11], numerical device simulations were
used to show the failure of the reciprocity relation in the
case of nonidentical band diagrams in the dark and under
illumination. However, these numerical experiments are
limited by the validity of the underlying description of the
photovoltaic device operation, which has thus far been
restricted to semiclassical bulk physics. On the other hand,
there is a range of photovoltaic device architectures under
active development where this conventional bulk picture is
no longer appropriate as it fails to reflect the dependence of
the microscopic electronic structure on the operating point
of the device, such as nanostructure-based and ultrathin
solar cells [13,14]. In this Letter, we therefore assess the
validity of Eqs. (2) and (3) if applied to ultrathin solar cells
by comparison with the quantum-kinetic picture of radia-
tive charge carrier generation, transport, and recombination
as formulated within the nonequilibrium Green’s function
(NEGF) formalism [15–17]. To this end, the coupled
NEGF problems of interacting electrons and photons are
solved—for the first time—for a realistic solar cell device
exhibiting a complex potential profile, such as the ultrathin
GaAs p-i-n structure displayed in Fig. 1.
In the case of a planar absorber, the local NEGF

expressions for the spectral radiative rates (per unit volume,
z: depth) read [18,19]

Rabs=emðz; EγÞ ¼
X
μ

Z
d2q∥

ð2πÞ2 r
μ
abs=emðq∥; z; EγÞ; ð4Þ

with the modal components for net absorption rabs;net≡
rabs − rem;stim, accounting for stimulated emission, and
spontaneous emission rem;spont ≡ rem − rem;stim given by

rμabs;netðq∥; z; EγÞ ¼
X
ν

Z
dz0½D<

μνðq∥; z; z0; EγÞ

× Π̂νμðq∥; z0; z; EγÞ�=ð2πℏÞ; ð5Þ

rμem;spontðq∥; z; EγÞ ¼
X
ν

Z
dz0D̂μνðq∥; z; z0; EγÞ

× Π<
νμðq∥; z0; z; EγÞ�=ð2πℏÞ: ð6Þ

In the above equations, q∥ is the transverse—i.e., in-plane
—component of the photon wave vector, D denotes the
transverse photon Green’s function, and Π is the transverse
photon self-energy tensor related to the polarization of the
electronic system [20]. These expressions provide a general
microscopic relation between local absorption and emis-
sion rates in terms of occupied photon and electron-hole
pair states (D<, Π<) and the corresponding final state
spectral functions (Π̂≡ Π> − Π<, D̂≡D> −D<). The
expressions are valid for the arbitrary shape of the density
of states and nonequilibrium occupation corresponding to
the actual operating point of the structure under optical or
electronic excitation.
For the comparison with the semiclassical quasiequili-

brium result (2), several approximations corresponding to
the restricted regime of validity of the latter are applied to
Eqs. (5) and (6). In the case of the absorption, coupling to a
coherent radiation field permits us to replace the photon
Green’s function by the electromagnetic vector potential A
of the incident radiation field,

rμabs;netðq∥; z; EγÞ ¼
i

ℏμ0
Aμðq∥; z; EγÞ

Z
dz0½A�

μðq∥; z0; EγÞ

× Π̂μμðq∥; z0; z; EγÞ� ð7Þ

≡ Φμðq∥; z; EγÞαμðq∥; z; EγÞ: ð8Þ
Equation (8) formally defines the local andmodal absorption
coefficient α via the local generation rate and the local value
of the photon flux Φ. For slow variation of the transverse
electromagnetic field in the absorber, the absorption coef-
ficient can be expressed solely in terms of the electronic
properties of the absorber using the modal form [19]

αμðq∥; z; EγÞ ≈
ℏc0
2nrEγ

Z
dz0iΠ̂μμðq∥; z0; z; EγÞ: ð9Þ

To account for the isotropy of the media assumed in the
derivation of Eqs. (2) and (3), the average local absorption
coefficient for an isotropic medium is considered via

ᾱðz; EγÞ ≈
ℏc0
2nrEγ

Z
dz0i ˆ̄Πð0; z0; z; EγÞ; ð10Þ

where Π̄ ¼ P
μΠμμ=3. Use of the zero photon momentum

component is justified by the weak q∥ dependence of the
polarization function in the relevant range of photon wave

FIG. 1. Band profile—conduction band edge EC and valence
band edge EV—and quasi-Fermi levels for electrons (μn) and
holes (μp) in a 100 nm thin GaAs p-i-n—diode at applied bias
voltage of V ¼ 1.1 V. Both quantities are obtained from the
solution of the full NEGF-Poisson problem.
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vectors, since the latter are small as compared to the charge
carrier quasimomenta.
In analogy to the treatment of the absorption coefficient

in Eq. (10), the average emission for an isotropic medium is
found as

R̄emðz; EγÞ ≈
nrEγ

2π2ℏ2c0

Z
dz0iΠ̄<ð0; z0; z; EγÞ; ð11Þ

where for the last step, the momentum integration of the
bare photon Green’s function was used [18],Z

d2q∥

ð2πÞ2 D̂μν;0ðq∥; z; z0; EγÞ ¼ −
inrEγ

3πℏc0
δμν: ð12Þ

At global quasiequilibrium conditions—i.e., constant
quasi-Fermi level splitting—the Kubo-Martin-Schwinger
relation [29]Π<ðEγÞ¼e−βðEγ−ΔμÞΠ>ðEγÞ yieldsΠ<ðEγÞ ¼
Π̂ðEγÞfBEðEγ − ΔμÞ, which, inserted in Eq. (11), repro-
duces expression (2). At this point, however, it needs to be
emphasized that the two polarization function components
entering expressions (10) and (11) are computed on the
basis of the same electronic Green’s functions, which in
turn may depend strongly on the point of operation. As
shown in Fig. 2 displaying the absorption coefficient and
spectral emission rate in the center of the intrinsic region of
a 100 nm GaAs p-i-n photodiode, this is indeed the case for
ultrathin absorber solar cells: due to the strong impact of the
built-in field on the local absorption coefficient [13], the

emission spectrum at V ¼ 1 V based on the generalized
Planck law (2)—R̄GP

em—does only coincide with the one
obtained from the isotropic NEGF expression (11)—
R̄NEGF

em —if the absorption coefficient at V ¼ 1 V is used.
In contrast, the generalized Planck emission spectrum
based on the absorption coefficient at short circuit con-
ditions (V ¼ 0 V) shows a strong field-induced redshift
and broadening as compared to the NEGF spectrum.
Since the validity of the generalized Planck law is an

essential requisite for the photovoltaic reciprocity relation
to hold, the above finding has severe consequences for the
applicability of Eq. (3) to the case of the ultrathin solar cells
under consideration, as QPV is conventionally defined at
zero applied bias voltage where it provides the short circuit
current Jsc under the action of the external illumination
spectrum. However, for a proper assessment of Eq. (3), the
local relation (2) between absorption and emission first
needs to be propagated to the global relation between QPV
and the emitted photon flux ϕem at the surface of the device.
To this end, in addition to the local dynamics, knowledge of
the propagation of light inside the cell is required. This
information is encoded in the NEGF version of the
Poynting vector component SzðzÞ ¼

R
dEγSzðz; EγÞ for

the energy flux normal to the slab surface, which in terms
of the photon Green’s functions is given by [30]

Szðz; EγÞ ¼
Eγ

2πℏ

Z
d2q∥

ð2πÞ2 szðq∥; z; EγÞ; ð13Þ

szðq∥; z; EγÞ ¼ −lim
z0→z

∂z0Re
X
μ¼x;y

½D>
μμðq∥; z; z0; EγÞ

þD<
μμðq∥; z; z0; EγÞ�: ð14Þ

In Ref. [30], Poynting’s theorem for slab geometry
∂zSzðzÞ ¼ −WðzÞ, withW denoting the energy dissipation,
was used to relate the (modal) absorptance of a homo-
geneous slab to the (modal) photon flux at the slab
surface via

SzðzdÞ − Szðz0Þ ¼ −
Z

zd

z0

dzWðzÞ ð15Þ

≡ −
Z

dEγ

2πℏ
Eγ

Z
d2q∥

ð2πÞ2 wðq∥; EγÞ; ð16Þ

where zd − z0 ¼ d is the absorber thickness, and the modal
dissipation can be written as follows;

wðq∥; EγÞ ¼ −2
X
μ;ν

½bμνðq∥; EγÞ − nμνðq∥; EγÞ�

× aμνðq∥; EγÞ: ð17Þ
In the above expression, b characterizes the global non-
equilibrium distribution function of medium-induced fluc-
tuations and n is the distribution function of incident
external photons [30]. The microscopic expression for
the absorptance of the slab in the general nonequilibrium
state is given by
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FIG. 2. Local absorption coefficient α and spectral volume
emission rate in the center of the intrinsic region of a 100 nm
thick GaAs p-i-n solar cell. Dark lines represent the NEGF
absorption coefficients at V ¼ 0 V (dashed) and V ¼ 1 V (solid),
respectively. The corresponding generalized Planck (GP) spectra
for quasi-Fermi level splitting of Δμ=q ¼ 1 V are given by light
solid and dotted lines, respectively. The isotropic NEGF result
R̄NEGF

em for the emission at V ¼ 1 V (open symbols) is in excellent
agreement with the generalized Planck spectrum R̄GP

em obtained
from the isotropic NEGF absorption coefficient at this bias
voltage, but strongly broadened and redshifted as compared to
the generalized Planck spectrum obtained from the absorption
coefficient at short circuit conditions (V ¼ 0 V, dotted line).
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aμνðq∥; EγÞ ¼ −
Z

dz
Z

dz0½D̂v;μνðq∥; z; z0; EγÞ

× Π̂νμðq∥; z0; z; EγÞ�; ð18Þ
with D̂v the spectral function of vacuum-induced
incident fluctuations [31]. Under the assumption of
complete isotropy, the absorptance obeys aμνðq∥; EγÞ ≈
āðEγÞδμν=ð2 cos θÞ for q∥ ¼ q0 sin θ with q0 ¼ Eγ=ðℏc0Þ.
In the case of global quasiequilibrium characterized by a
quasi-Fermi level splittingΔμ ¼ μn − μp, the distribution of
medium-induced excitations amounts to the corresponding
Bose-Einstein function, bμνðq∥; EγÞ≡ fBEðEγ − ΔμÞ, and
the integration in Eq. (17) is restricted to the absorptance.
Hence, usingEq. (17) for vanishing incident radiation field—
i.e., n≡ 0—expression (16) for emission into air becomes

ϕemðEγÞ ¼ Szðzd; EγÞ=Eγ ¼ −Szðz0; EγÞ=Eγ ð19Þ

¼ −
1

2

Z
d2q∥

ð2πÞ3ℏwðq∥; EγÞ ð20Þ

¼ āðEγÞ
E2
γ

4π2ℏ3c20
fBEðEγ − ΔμÞ; ð21Þ

which is exactly the result found by Würfel in Ref. [2] for
identical assumptions.
For the ultrathin solar cell considered here, the global

quasiequilibrium conditions—corresponding to practically
constant quasi-Fermi level splitting throughout the absorber
—are well met, as can be inferred from Fig. 1. The quasi-
Fermi levels μnðpÞ for electrons (holes) shown there are
obtained from the NEGF carrier densities ρ and spectral
functions Ĝ≡iðG>−G<Þ via the local fluctuation-dissipa-
tion theorem [32], by solving numerically the nonlinear
equation

ρnðpÞ½G≶
nðpÞ�ðzÞ¼

Z
dE
2π

Z
d2k∥

ð2πÞ2 ĜnðpÞðk∥;z;z;EÞ

×f1=2∓ 1=2þfFD½μnðpÞðzÞ;E�g; ð22Þ
where fFDðμ; EÞ ¼ fexp½βðE − μÞ� þ 1g−1 is the Fermi-
Dirac distribution function at lattice temperature T and
the upper (lower) sign is for electrons (holes). The tiny
gradient in the quasi-Fermi levels reflects the high charge
carrier mobility and the absence of fast recombination
processes, and leads to the equivalence QPV ≡ a, as shown
in Ref. [19], where the short circuit current under mono-
chromatic illumination is compared to the photocurrent
obtained from the absorptance. The spectral rate of photon
emission normal to the left surface into modes coupling to
normally incident light as provided by

R⊥;Poynt
em ðEγÞ ¼ −szð0; z0; EγÞ=ð2πℏÞ ð23Þ

with the modal Poynting vector computed directly from the
photon Green’s functions via Eq. (14) is therefore compared
to the corresponding generalized Kirchhoff law (GK)

R⊥;GK
em ðEγÞ ¼ að0; EγÞ=ð2πℏÞfBEðEγ − ΔμÞ; ð24Þ

where the absorptance is given byEq. (18). Figure 3 displays
the close agreement of R⊥;Poynt

em and R⊥;GK
em for Δμ=q set to

the applied bias voltage of V ¼ 1.1 V. Also shown is the
perfect match of the NEGF absorptance aNEGF used in
R⊥;GK

em with the absorptance aTMM obtained from a transfer
matrix method approach (TMM) using the absorption
coefficient at V ¼ 1.1 V, validating the photon component
of the coupled NEGF approach. In analogy to the local
relation between absorption coefficient and emission rate,
the global emission spectra provided by the full NEGF
solution are compared to those obtained from the general-
izedKirchhoff lawusing the absorptance determined at short
circuit conditions (V ¼ 0 V), which corresponds to the
standard definition of the external quantum efficiency
QPV for perfect carrier transport. Again, a large discrepancy
in the form of a strong redshift and broadening of
R⊥;GK

em ½αð0 VÞ� as compared to R⊥;Poynt
em is observed, con-

firming the invalidity of Eq. (3) in the regime of ultrathin
absorbers subject to large variation of built-in fields with
applied bias voltage. This analysis holds also for the
optically more complex situation of a device with a gold
back reflector attached to the right side, as shown in Fig. 4.
At this point, it is interesting to note that while the global
emission rate resulting from spatial integration of the local
rate (4) gives the radiative dark current upon integration over
photon energies, it does not coincide with the photon flux at
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FIG. 3. Total absorptance aNEGF (open squares) and spectral
emission rate R⊥;Poynt

em (open circles) of light with propagation
direction normal to the left slab surface, for a bias voltage of
V ¼ 1.1 V applied at the contacts, as given by Eqs. (18) and (23).
The results coincide with the values obtained directly from the
transfer matrix method and the generalized Kirchhoff law
[Eq. (24)], if the actual absorptance of the biased system is
used. For the absorptance at short circuit conditions (V ¼ 0 V,
dashed line), the generalized Kirchhoff emission spectrum
(dotted line) deviates significantly from the actual NEGF emis-
sion spectrum, exhibiting again a strong redshift and broadening
attributed to the field-induced tailing of the joint density of states.
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the surface of the cell, as the propagation through the
absorbing material is not accounted for. The resulting
impact of reabsorption on the spectral shape and magnitude
of the emission at the surface can be inferred from the
difference of the curves for the emission rate given by the
Poynting vector—i.e.,R⊥;Poynt

em —and that obtained from the
z-integrated modal emission rate (6), i.e., R⊥;glob

em ðEγÞ ¼R
dzrem;spontð0; z; EγÞ (dash-dotted line).
In conclusion, we presented a critical assessment of the

photovoltaic reciprocity relation between external quantum
efficiency and electroluminescent emission in ultrathin
solar cells, by application of a comprehensive nonequili-
brium quantum theory of photovoltaic device operation
which considers both electronic and optical degrees of
freedom on equal footing. The explicit relation of the
macroscopic device properties to the microscopic non-
equilibrium charge carrier states reveals the approximate
nature of the semiclassical reciprocity theorem and pro-
vides at the same time a more generally valid picture of
local (generalized Planck) and global (generalized
Kirchhoff) connections between radiative processes in
mesoscopic solar cell devices. This is of high practical
relevance for photovoltaic devices whose characteristics are
no longer determined by the equilibrium bulk properties of
the constituent materials, but by the actual nonequilibrium
device state at the operating point, as in the case of the
ultrathin solar cell architectures considered here and in a
wide range of nanostructure-based implementations of
third-generation solar cell concepts.

The authors acknowledge helpful discussions with Bart
Pieters and Thomas Kirchartz.
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FIG. 4. Same as Fig. 3, but now for a system with a gold back
reflector attached at the right side. Additionally, the global
emission rate R⊥;glob

em obtained from the z integration of the local
rate for normal emission is shown (dash-dotted line), revealing
the effect of reabsorption on the spectral shape and intensity of
the emission at the surface.
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