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We experimentally explore the dynamical optical hysteresis of a semiconductor microcavity as a
function of the sweep time. The hysteresis area exhibits a double power law decay due to the influence of
fluctuations, which trigger switching between metastable states. Upon increasing the average photon
number and approaching the thermodynamic limit, the double power law evolves into a single power law.
This algebraic behavior characterizes a dissipative phase transition. Our findings are in good agreement
with theoretical predictions for a single mode resonator influenced by quantum fluctuations, and the present
experimental approach is promising for exploring critical phenomena in photonic lattices.
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Optical bistability—the existence of two stable states
with different photon numbers for the same driving
conditions—is a general feature of driven nonlinear sys-
tems described within the mean-field approximation (MFA)
[1]. Beyond the MFA, a quantum treatment predicts that
the steady state of a nonlinear cavity is always unique [2].
The origin of this apparent contradiction was noted by
Bonifacio and Lugiato [3], and by Drummond and Walls
[4]: quantum fluctuations (the lost feature in the MFA)
trigger switching between states and the unique solution
corresponds to a weighted average over the two metastable
states. Experiments in the 1980s with two-mode lasers
evidenced extremely long switching times [5], which were
predicted to diverge for weak fluctuations and/or large
photon numbers [6]. Already in these early works, this
dramatic slowing down of the system dynamics was linked
to a first order phase transition [5–7].
The physics emerging from fluctuations in nonlinear

resonators is receiving renewed interest in photonics due to
the emergence of nonlinear resonators such as photonic
crystals [8,9], waveguides [10], superconducting micro-
wave resonators [11,12], or optomechanical resonators
[13,14]. They provide new opportunities to study quantum
many-body phases [15–20], critical phenomena [19–25],
and dissipative phase transitions [26]. In this context,
semiconductor microcavities operating in the exciton-
photon strong coupling regime enable exquisite control
over photon hopping in lattices of different dimension-
alities [27–29]. Their elementary excitations, namely,
cavity polaritons, display strong Kerr nonlinearities via
the exciton component [30–33].
Recently, it was predicted that critical exponents could be

retrieved from dynamical hysteresis measurements in a
single resonator [22]. When the driving power is swept

at a finite speed across a bistability, the area of the hysteresis
cycle is expected to close following a double power law as a
function of the sweep time [22,34]. The long-time decay
arises from quantum fluctuations, and presents a universal
−1 exponent [22]. In the thermodynamic limit wherein the
intracavity photon number tends to infinity and fluctuations
are negligible, the algebraic decay of the hysteresis area
is expected to evolve into a single power law [24].
This behavior characterizes a first order dissipative phase
transition [24].
In this Letter, we experimentally demonstrate the alge-

braic decay of the dynamical optical hysteresis in semi-
conductor micropillars. Scanning the power up and down at
decreasing speeds, we observe the progressive closure of
the hysteresis cycle. The hysteresis area exhibits a temporal
double power law decay with experimentally retrieved
exponents in agreement with calculations including quan-
tum fluctuations only. Probing different laser detunings and
photon-photon interactions, we show that the algebraic
decay evolves towards a single power law when the photon
number becomes very large, i.e., when approaching the
thermodynamic limit. Our results pave the way to the
investigation of dissipative phase transitions in lattices of
nonlinear resonators.
First, we briefly revisit the physics of a driven-dissipative

single mode nonlinear cavity as illustrated in Fig. 1(a).
ω0, γ, and U represent the mode frequency, linewidth, and
photon-photon interaction strength (Kerr nonlinearity) of
the cavity, driven by an electromagnetic field of frequency
ω and intensity I. Within the rotating-wave approximation,
the Hamiltonian (ℏ ¼ 1) is

ĤðtÞ¼ω0â†âþ
U
2
â†â†ââþ

ffiffi
I

p
ðe−iωtâ†þeiωtâÞ: ð1Þ
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The boson operator â (â†) annihilates (creates) an
excitation in the resonator. The dynamics is described by
the Lindblad master equation for the density matrix ρ̂ðtÞ:

∂ρ̂ðtÞ
∂t ¼ i½ρ̂; ĤðtÞ� þ γ

2
ð2â ρ̂ â† − â†â ρ̂−ρ̂â†âÞ: ð2Þ

Equation (2) can be written as ∂tρ̂ ¼ L̂ ρ̂, where L̂ is the
Liouvillian superoperator. L̂ has a complex spectrum, of
which two eigenvalues λ are particularly relevant for the
long-time dynamics: (i) λ ¼ 0 corresponds to the steady
state, and (ii) the nonzero eigenvalue with the real part
closest to zero is the Liouvillian gap λ̄.
An exact expression for the steady-state photon density

predicted by Eq. (2) was found in Ref. [4]. This exact
solution is shown as a gray line in Fig. 1(c), for U=γ ¼
0.0075 and a laser-cavity detuning Δ ¼ ω − ω0 ¼ γ. The
MFA follows from assuming the field to be coherent
with amplitude αðtÞ ¼ hâi. Equation (2) then reduces to
ið∂α=∂tÞ ¼ ðω0 − iðγ=2Þ þ Ujαj2Þαþ ffiffi

I
p

e−iωt. The black
line in Fig. 1(c) is the corresponding MFA calculation,
displaying bistability for 31 < I=γ2 < 33. While the MFA
implies a hysteresis cycle when varying the power across
the bistability, the quantum solution is unique. This
apparent contradiction is due to the absence of fluctuations
in the MFA [3,4]. Fluctuations (quantum or classical)
render the mean-field steady states metastable [36,37],
and the unique steady state corresponds to their average.
The reconciliation between numerous reports of optical

bistability [31,38–46] and the quantum prediction of a
unique steady state [4] follows from the fact that fluctuations
can take astronomical times to induce switching between
metastable states. Historically, this switching time is known
as the tunneling time for bistability τtunn [47–49], first-
passage time [5], quantum activation time [50], or the
(inverse) asymptotic decay rate [26]. We will label this
characteristic time as τtunn, which is obtained byminimizing
the Liouvillian gap λ̄ as a function of I. λ̄ is calculated
numerically by diagonalizing L̂. Figure 1(d) shows τtunn as a
function of Δ=γ for different U=γ. For weak interactions
and/or large detunings, τtunn can vastly exceed realistic
measurement times. Consequently, hysteresis measurements
performed within a shorter time than τtunn lead to an apparent
bistability. In this vein, Casteels and co-workers predicted
how the hysteresis area should be influenced by quantum
fluctuationswhen the scanning time across the “bistability” is
commensuratewith τtunn [22]. They predicted a double power
law decay of the hysteresis area [22], in contrast with
previous reports of a single power law decay [40].
To measure dynamic optical hysteresis, we use micro-

pillars etched from a GaAs λ planar cavity containing one
8 nm In0.04Ga0.96As quantum well and surrounded by two
Ga0.9Al0.1As=Ga0.05Al0.95As distributed Bragg reflectors
with 26 and 30 pairs of layers at the top and bottom,
respectively. We use rectangular micropillars where

discrete states are many linewidths apart and orthogonal
linearly polarized modes are nondegenerate. Thus, our
configuration emulates a single mode nonlinear cavity as
described by Eqs. (1) and (2). The sample is maintained at
4 K and driven by a frequency-tunable single-mode laser.
We probe the lowest energy mode of the micropillars,
whose linewidth ranges from 28 to 34 μeV [35]. The value
of U is estimated from the energy of the confined polariton
mode and its exciton fraction [35]. The laser power is
modulated by an electro-optic modulator (EOM) fed by a
waveform generator [see Fig. 2(a)]. The waveform contains
a series of ∼50 triangular ramps of variable time duration.
The transmission through the cavity is measured with a
photodiode connected to an oscilloscope. The scanning
times ts (the time it takes to ramp the power from the lowest
to the highest value) span the 0.8–50 kHz range. As shown
in the Supplemental Material, laser shot noise is the only
noise source within this frequency range and we exclude
additional fluctuations from our observations [35].
We are interested in the hysteresis area,

A ¼
Z

Pmax

Pmin

jn↓ðPÞ − n↑ðPÞjdP; ð3Þ
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FIG. 1. (a) Sketch of a microcavity with mode frequency ω0,
loss rate γ, photon-photon interactions of strengthU, driven by an
electromagnetic field of intensity I and frequency ω. (b) Normal-
ized photon density in a semiconductor microcavity under
weak driving. Experimental data points for the sample studied
in Figs. 2, 3, and 4 are fitted with a Lorentzian line shape.
The shaded area indicates the mean-field bistable regime Δ≡
ω − ω0 >

ffiffiffi
3

p
γ=2 for U > 0. (c) Mean-field (black curves) and

quantum (gray curves) solutions for a cavity with U ¼ 0.0075 γ
probed at Δ ¼ γ. In the mean-field solution, the solid and dashed
curves are stable and unstable states, respectively. (d) Tunneling
time τtunn between the two mean-field states. Data points are
residence time measurements [35].
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as a function of ts. n↓ðPÞ and n↑ðPÞ represent the cavity
transmission when the power is ramped down and up,
respectively. Pmin and Pmax are powers below and above the
hysteresis range. In the absence of fluctuations, A saturates
to a finite value (the mean-field static hysteresis area)
for ts → ∞ [40]. However, unavoidable quantum fluctua-
tions induce switchings between the mean-field “bistable”
states.Consequently, the hysteresis area averaged overmany
realizations, Aav, is expected to close in proportion to the
number of switching events such that limts→∞Aav ¼ 0.
In Figs. 2(b) and 2(c) we compare single-shot (thin lines)

and averaged (thick lines, 1000 realizations) transmission
measurements for a micropillar of lateral dimensions
4 × 2 μm2 probed atΔ=γ ¼ 1.09. The single-shot measure-
ments in Fig. 2(c) display more switchings than in Fig. 2(b)
because the sweep is slower in Fig. 2(c). Consequently, Aav
is reduced in Fig. 2(c).
Figure 2(d) shows hysteresis measurements (averaged

over 1500 realizations) for Δ=γ ¼ 1.01 and different values
of ts. Aav closes for increasing ts. For the slowest sweep, the
measured cycle strongly deviates from the mean-field
prediction (dashed lines) and resembles the exact quantum
prediction in Fig. 1(c). In contrast, for largerΔ=γ, τtunn ≫ ts
and Aav changes marginally [see Fig. 2(e)].
The behavior of Aav not only depends on ts, but also on

the scanned power range Ps ≡ Pmax − Pmin. The ratio ts=Ps
gives an effective (inverse) sweep speed. In Fig. 3(a) we
plot Aav as a function of ts=Ps for six different Δ=γ. For
smallΔ=γ we observe two power laws indicated by the gray
and blue lines in Fig. 3(a). The blue lines correspond to a

power law with a −1 exponent, as expected when τtunn < ts
[22]. For increasing Δ=γ, the average photon number in the
bistability increases and fluctuations become relatively
weaker. This shifts the onset of the −1 power law to times
far beyond our observation window.
Calculating the dynamics behind the results in Fig. 3(a)

requires a time evolution up to 108 times the polariton
lifetime (21 ps), a temporal resolution below the polariton
lifetime, and a dimensionality of the Hilbert space of ∼103.
To circumvent this difficulty, Ref. [22] introduced a method
based on a scaling analysis in the spirit of the Kibble-Zurek
mechanism for dynamic phase transitions [51]. The key
idea is that a power sweep at a finite rate across the
bistability involves a nonadiabatic response of the system,
resulting in hysteresis. The nonadiabatic intensity range δI
is determined by comparing the sweep time scale τS with
the system reaction time τR (see Fig. 3(b) inset and
Ref. [35]), obtained by diagonalizing L̂. Similar to Aav,
δI exhibits a double power law as a function of the sweep
rate [22].
Figure 3(b) shows calculations of δI for the samevalues of

Δ=γ considered in experiments. The lines in Fig. 3(b) are
power laws with exponents obtained from fits to the
measurements in Fig. 3(a). Excellent agreement between
experiments and theory is demonstrated by the fact that we
do not fit the exponent of the power laws in Fig. 3(b) to the
calculations of δI. We only adjusted the value ofU=γ within
the experimental uncertainty. We take U=γ ¼ 7.5 × 10−3,
whereas the experimental estimate [35] is U=γ ¼
2 × 10−3þ8×10−3

−1.6×10−3 . Overall, Fig. 3 shows that as Δ=γ
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FIG. 2. (a) Experimental setup: λ=2,MO, PD, andEOMþ pol, stand for half-wave plate,microscope objective, photodiode, and electro-
optic modulator with a polarizer, respectively. The green (purple) traces in the waveform generator and in the oscilloscope are
measurements of the incident (transmitted) signals. The hysteresis cycles in the oscilloscope are the transmitted versus the incident signal,
overlaid for various scanning times. The colored and black lines in (b)–(e) represent the transmission when the power is ramped down and
up, respectively. (b) and (c) show single shot (thin lines) and averages over 1000 realizations (thick lines) of dynamic hysteresis. The
scanning time is ts ¼ 0.11 ms in (b), and ts ¼ 0.43 ms in (c). (d) and (e) show dynamic hysteresis averaged over 1500 realizations for
values of ts indicated between the two panels. The dashed line in (d) is the mean-field calculation corresponding to the experiment.
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decreases and the photon number in the bistability
decreases, the hysteresis area evolves from a single to a
double power law decay. The power law at large Δ=γ or
small ts is also present in the absence of fluctuations [40].
This generic feature of classical nonlinear systems is due to a
shift of the limit point where the system jumps between
branches for increasing drive speed [40,52]. The power law
at large ts is due to the influence of fluctuations, which could
be classical (e.g., thermal [34]) or quantum.Toverify that the
−1 power lawwe observe is due to quantum fluctuations, we
compare the characteristic time scale of the stochastic jumps
leading to the closure of Aav [see Figs. 2(b) and 2(c)] with
τtunn. In particular, we measured the residence time of the
system in themetastable states [35]. The results, presented in
Fig. 1(d), are in good agreement with calculations including
quantum fluctuations only. Thermal fluctuations and non-
linear losses (e.g., collisional broadening [53]), neglected in
the master equation used to calculate τtunn, are unnecessary
to reproduce our experiments.
A thermodynamic limit can be defined for a single

resonator by letting the photon number N → ∞ and U → 0
while keepingUN constant [24]. This limit can be explored
probing cavities with different values of U=γ at a fixed
laser-cavity detuningΔ=γ. Experimentally, we varyU=γ by

selecting micropillars with different lateral dimensions.
A reduced cross-sectional area of the micropillar blueshifts
the energy of the confined polariton modes and increases
their exciton fraction, thereby increasing U=γ [35].
Figure 4(a) shows measurements of Aav for three cavities
probed atΔ=γ ¼ 1.15� 0.1. For cavity 1 with the strongest
interaction strength, Aav displays a double power law with
the −1 exponent at large ts=Ps. As U=γ decreases, the time
at which the power law with the −1 exponent sets in
increases. For cavity 3 with the weakest interaction
strength, Aav depends marginally on ts=Ps and the data
follow a single power law. These observations are con-
sistent with the dramatic dependence of τtunn on U=γ
plotted in Fig. 1(d).
Figure 4(b) shows calculations based on the scaling

analysis previously described, in good agreement with the
measurements in Fig. 4(a). Details about the values of U=γ
used in the calculations are discussed in the Supplemental
Material [35]. Overall, Fig. 4 demonstrates that as U → 0
and the average photon number in the bistability increases,
the hysteresis area evolves towards a single power-law
decay. This is the signature of a system approaching the
thermodynamic limit of high photon numbers [24].
To summarize, we showed a temporal double power law

decay of the hysteresis area of single nonlinear resonators.
The power laws observed for large scanning times exhibit an
exponent equal to−1 for different laser-cavity detunings and
nonlinearities, as expected due to the influence of quantum
fluctuations. In the thermodynamic limit of large photon
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numbers, mean-field bistability is unaffected by fluctua-
tions: the hysteresis area exhibits a single power law decay
associated with a dissipative phase transition. These results
open the way to the exploration of dissipative phase
transitions in lattices of micropillars, where photon hopping
can give rise to intriguing behavior. For instance, a square
lattice of bistable resonators has been mapped to an
equilibrium Ising model with an effective temperature given
by the losses [25]. The question remains open regarding
phase transitions in more elaborate lattices with intricate
topologies [54], with spin-orbit coupling [55], or with
quasicrystalline structure [56] in which thermodynamic
properties reflect their noninteger dimensions [57,58].
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