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We propose a two-dimensional plasmonic platform—periodically patterned monolayer graphene—
which hosts topological one-way edge states operable up to infrared frequencies. We classify the band
topology of this plasmonic system under time-reversal-symmetry breaking induced by a static magnetic
field. At finite doping, the system supports topologically nontrivial band gaps with mid-gap frequencies up
to tens of terahertz. By the bulk-edge correspondence, these band gaps host topologically protected one-
way edge plasmons, which are immune to backscattering from structural defects and subject only to
intrinsic material and radiation loss. Our findings reveal a promising approach to engineer topologically
robust chiral plasmonic devices and demonstrate a realistic example of high-frequency topological edge
states.
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Time-reversal-symmetry ðT Þ breaking, a necessary
condition for achieving quantum Hall phases [1,2], has
now been successfully implemented in several bosonic
systems, as illustrated by the experimental observation of
topologically protected one-way edge transport of photons
[3,4] and phonons [5]. More generally, two-dimensional
(2D) T broken topological bosonic phases have been
proposed in a range of bosonic phases, spanning photons
[6], phonons [7,8], magnons [9], excitons [10], and polar-
itons [11]. The operating frequency of these systems is
typically small, however—far below terahertz—limited by
the spectral range of the T -breaking mechanism. For
example, the gyromagnetic effect employed in topological
photonic crystals is limited by the Larmor frequency of the
underlying ferrimagnetic resonance, on the order of tens of
gigahertz [3]. In phononic realizations, the attainable
gyrational frequencies limit operation further still, to the
range of kilohertz [12]. Towards optical frequencies,
proposals of dynamic index modulation [13] and optome-
chanical coupling [14] are promising but experimentally
challenging to scale to multiple coupled elements [15–17].
Recently, Jin et al. [18] pointed out that the well-known

magnetoplasmons of uniform 2D electron gases [19,20]
constitute an example of a topologically nontrivial bosonic
phase hosting unidirectional edge states. However, as the
topological gap exists only below the cyclotron frequency
ωc, the spectral operation remains limited to low frequen-
cies. In this Letter, we show that by suitably engineering the
plasmonic band structure of a periodically nanostructured
2D monolayer graphene, see Fig. 1(a), the operation
frequency of topological plasmons [21] can be raised
dramatically, to tens of terahertz, while maintaining large-
gap–midgap ratios even under modest B fields. Bridging

(a)

(c)

(b)

FIG. 1. Two-dimensional topological plasmonic crystal under
magnetically induced T breaking. (a) Schematic of triangular
antidot lattice in graphene. Under an external magnetic field
B ¼ Bẑ, a finite lattice supports topologically protected one-way
edge plasmons. (b) Band-folded plasmon dispersion in uniform
graphene at B ≠ 0; characteristic frequencies ωK and ωc in-
dicated. The symmetry-induced Dirac cone is gapped for d ≠ 0.
(c) Characteristic frequencies’ dependence on the crystal period
a, magnetic field B, and Fermi level EF.
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ultrafast electronics and infrared topological photonics, the
proposed platform can be integrated with CMOS technol-
ogy, allowing dynamically gate-tunable topological states
across a broad spectral range.
Graphene distinguishes itself as an ideal platform for

topological plasmonics in three key aspects: first, it sup-
ports large, tunable carrier densities n ∼ 1011–1014 cm−2

[27–29], or equivalently, large, tunable Fermi energies
EF ¼ ℏvF

ffiffiffiffiffiffi
πn

p
(Fermi velocity, vF ≈ 9.1 × 107 cm s−1

[30]); second, it exhibits an ultrasmall, tunable Drude
mass m� ≡ EF=v2F (e.g., at EF ¼ 0.2 eV, m�=me ≈ 4%),
allowing ultrahigh cyclotron frequencies ωc ≡ eB=cm� ¼
eBv2F=cEF up to the terahertz range [32–34]; and third,
high-quality graphene can exhibit exceptionally long
intrinsic relaxation times 1=γ, extending into the pico-
second range [35,36]. These properties enable topological
plasmons of unprecedentedly high frequency, short wave-
length, long propagation, and large topological band gaps.
The plasmonic properties of a general graphene domain

r ∈ Ω ⊆ R2 under an external magnetic field B ¼ Bẑ is
described by a linear eigenvalue problem with three field
components: the scalar potential Φ and the surface electric
current density J≡ Jxx̂þ Jyŷ [18]. For an eigenstate
indexed by ν and frequency ων, this eigenproblem is
specified by [37]

ĤUν ¼ ωνUν; ð1aÞ

withUν≡
�
ωFΦ
J

�
and Ĥ≡

�
0 ωFV̂p̂T

αp̂ ωcσ2

�
: ð1bÞ

Here, p̂≡ −i∇ is the in-plane momentum operator,
V̂½f�ðrÞ≡ R

Ω fðr0Þ=jr − r0j d2r0 the Coulomb operator,

σ2 ≡ ð0 −i
i 0 Þ a Pauli matrix, ωF ≡ EF=ℏ the Fermi

“frequency,” and α≡ e2=πℏ a prefactor of graphene’s
intraband conductivity iαωFω

−1. Conceptually, Eqs. (1)
comprise the Coulomb, continuity, and constitutive equa-
tions. The no-spill boundary condition J · n̂ ¼ 0 applies
along the perimeter ofΩ (edge normal, n̂). Under a suitable
inner product Eq. (1a) is Hermitian (see Supplemental
Material [38]).
We explore the band topology of 2D plasmons in

periodically structured graphene under magnetic-field
induced T breaking. Figure 1(a) illustrates our design: a
triangular antidot lattice of periodicity a and antidot
diameter d is etched into a suspended sheet of graphene.
The domain Ω in Eqs. (1) is then the torus defined by the
rhombic unit cell of Fig. 2(a). Band folding splits the
eigenindex ν into a band index n ¼ 1; 2;… and a crystal
wave vector k restricted to the hexagonal Brillouin zone
(BZ) of Fig. 2(b). Accordingly, the eigenvectors assume
the Bloch form UnkðrÞ ¼ unkðrÞeik·r, with periodic com-
ponent unk ≡ ðωFϕ; jÞTnk.
First, we consider the simple but instructive d ¼ 0

scenario, i.e., the uniform sheet, see Fig. 1(b). This “empty
lattice” captures the essential impact of band folding:
by folding the uniform sheet plasmon dispersion, ωðkÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2παωFkþ ω2

c

p
, over the hexagonal BZ, threefold Dirac-

like point degeneracies arise between the n ¼ 1; 2, and 3
bands at the K (and K0) point. For B ¼ 0, the lattice’s C6v
symmetry guarantees that twofold-degenerate Dirac points
remain between the n ¼ 1 and 2 bands even when d ≠ 0.
The uniform-sheet Dirac point plasmon frequency, ωK ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω0

KÞ2 þ ω2
c

p
with ω0

K ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2παωFjKjp

and jKj ¼ 4π=3a,
along with the cyclotron frequency ωc, then define the

(a)

(d)

(b) (c)

FIG. 2. Bulk properties. (a) Unit cell. (b) Brillouin zone. (c) Bulk dispersion along the high-symmetry directions of the irreducible BZ
for B ¼ 0, 1, 4, and 8 T. Chern numbers are indicated in orange labels; composite Chern numbers are highlighted by a dashed periphery.
(d) Splitting of Γ and K point degeneracies and opening of low- and high-frequency topological band gaps with increasing
magnetic field.
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characteristic frequencies of the problem and are indicated
in Fig. 1(b). By applying a finite B field to the d ≠ 0
system, the Dirac point degeneracy is split, inducing a gap
linearly proportional to ωc. As a result, topological plas-
mons with both high frequency and sufficient topological
gap require simultaneously large ω0

K and ωc.
The parameter space involved in simultaneously maxi-

mizing ω0
K and ωc is illustrated in Fig. 1(c). The monotonic

EF-dependence of the two characteristic frequencies is
opposite, highlighting an inherent trade-off between the
operating frequency and the gap size. In addition, the
accessible parameter space is restricted by several con-
straints, indicated by gray regions in Fig. 1(c): first,
intrinsic Drude loss estimated at γ=2π ∼ 1 THz smears
out the gap region, necessitating ωc ≳ γ; second, interband
dispersion is non-negligible when ωK ≳ ωF [52,53], even-
tually introducing significant loss through Landau damp-
ing; and third, Landau quantization of the charge carriers
ultimately invalidates a semiclassical description [54,55]
when EF ≲ EL ≡ vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏeB=c

p
(the first Landau level), or

equivalently, when ℏωc ≲ 1
2
EL, see Supplemental Material

[38]. Overall, we find that an experimentally favorable
region exists for Fermi energies EF ∼ 0.2–0.3 eV, perio-
dicities a ∼ 100–600 nm, and magnetic fields B ∼ 2–8 T.
Next, we turn to the nanostructured system, settling on a

periodicity a ¼ 400 nm, antidot diameter d ¼ 200 nm, see
Fig. 2(a), and a Fermi level EF ¼ 0.2 eV (equivalent, at
B ¼ 0, to a carrier density n ≈ 3 × 1012 cm−2). Antidot
lattices like these are well within experimental capabilities
[56–60]. The eigenvalue problem, Eqs. (1), is solved
numerically by discretizing in an unstructured triangular
mesh, employing linear nodal functions, and with the
lattice-specific Coulomb interaction evaluated by Ewald
summation (see Supplemental Material [38]). Figure 2(c)
depicts the calculated plasmon dispersion ωnðkÞ along the
boundary of the irreducible BZ for increasing magnetic
field strength B ¼ 0; 1; 4, and 8 T.
In the nonmagnetic scenario, B ¼ 0, the lattice disperses

like the uniform sheet under the substitution k → ζnðkÞ=a,
i.e., as ω0

nðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2παωFζðkÞ=a

p
, with modal parameter

ζnðkÞ solely dependent on a=d and the relative location of
k in the BZ [61]; e.g., at a=d ¼ 2 we find ζ1;2ðKÞ ≈ 2.535.
Near the Γ point ζ1ðkÞ ∝e jkj, yielding the conventional
long-wavelength 2D plasmon dispersion ω ∝e

ffiffiffi
k

p
. Particle-

hole symmetry (C) of Eqs. (1) entails the existence of a
corresponding set fn ¼ −1;−2;…g of negative energy
states, ω−nðkÞ ¼ −ωnð−kÞ (and a zero-frequency band,
n ¼ 0) [18]: accordingly, besides the Dirac point degen-
eracy at K between the n ¼ 1 and 2 bands, an implicit
degeneracy exists at Γ between the n ¼ �1 (and n ¼ 0)
bands. By applying a magnetic field, the bands are linearly
perturbed from ω0

nðkÞ to ωnðkÞ≃ ω0
nðkÞ þ ξnðkÞωc þ

Oðω2
cÞ (see Supplemental Material [38]); the modal per-

turbation parameter ξnðkÞ is obtained numerically at the
degeneracy points as ξ1ðΓÞ ≈ 0.63 and ξ1;2ðKÞ ≈ ∓ 0.27

at a=d ¼ 2 [62]. This is illustrated in Fig. 2(d): the
degeneracies at Γ and K are linearly and evenly gapped
when B ≠ 0. As we explain shortly, the low-frequency gap
opened at Γ supports a topological edge state entirely
analogous to its uniform sheet counterpart. The high-
frequency (≈15 THz) gap opening at K, however, intro-
duces a new, qualitatively distinct topological edge state.
Next, we describe the topological properties of the plas-

monic lattice as quantified by the bandChern number,CðnÞ ≡
ð2πiÞ−1 H∂BZhunkj∇kjunki dk (evaluated numerically from
the computed eigenvectors [64]). Figure 2(b) depicts the
evolution ofCðnÞ acrossB ¼ 0, 1, 4, and 8 T. AtB ¼ 0 T, the
Berry flux is identically zero, cf. time-reversal and parity
symmetry; the band structure is topologically trivial. For
B ≠ 0, T is broken, allowing nonzero Berry flux and
nontrivial topology: the first and second bands are gapped
for all B and have Cð1Þ ¼ Cð2Þ ¼ 0. Conversely, the
higher order bands, n ¼ 3; 4;…, display Chern numbers
covering a broader range, up to�2. A few bands exhibit point
degeneracies within numerical accuracy and are assigned a
composite Chern number Cðn⊕nþ1Þ. As the B field is
increased, there is an exchange of Chern numbers between
then ¼ 4, 5, and6bands as gaps close and reopen, illustrating
the mechanism of Berry flux monopole exchange. For even
stronger B fields (see Supplemental Material [38]), all six
bands eventually separate completely, leaving Cð1Þ ¼
Cð2Þ ¼ 0, Cð3Þ ¼ −2, and Cð4Þ ¼ Cð5Þ ¼ Cð6Þ ¼ þ1.
By the bulk-edge correspondence, the existence of

topologically protected edge states is intimately linked
with the bulk topology, i.e., with CðnÞ. As recently pointed
out in Ref. [18], the presence of C symmetry, and the
concomitant existence of a set of negative-frequency states
fn ¼ −1;−2;…g, necessitates a global perspective of the
band topology for the definition of associated gap Chern
numbers. Specifically, the total Chern number of positive
(þ) and negative (−) frequency bands isC� ≡P∞

n¼1 C
ð�nÞ.

In uniform graphene C� ¼ �sgnB [18]. Since Chern
numbers can be annihilated or created (pairwise) only
under band closings, this result holds in nanostructured
graphene as well; cf. the finite band gap separating positive
and negative bands. With this in mind, we define the nth
gap Chern number C̄n associated with the gap immediately
below the nth band as

C̄ðnÞ ≡ Xn−1
n0¼−∞

Cðn0Þ ¼ −sgnBþ
Xn−1
n0¼1

Cðn0Þ; ð2Þ

specializing to positive-frequency gaps at the last equality.
For lattice terminations adjacent to vacuum, bulk-edge
correspondence then requires that the number of left minus
right propagating topological edge states equal C̄ðnÞ [65].
These considerations predict the existence of single-

mode one-way edge states in the first and second gaps
when B ≠ 0 and multimode one-way edge states in the

PRL 118, 245301 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
16 JUNE 2017

245301-3



gap between the n ¼ 3, and 4 bands at B ¼ 4 and 8 T,
cf. Fig. 2(c). We confirm these predictions in Fig. 3 by
numerically calculating the edge states supported by a
broad ribbon (20 unit cells wide) extended along x with
the particular edge termination of Fig. 3(a). The bulk states
are folded into the projected 1D BZ, kx ∈ ð−π=a; π=aÞ,
see Fig. 3(b), due to breaking of Bloch periodicity along y.
Additionally, edge states emerge: they are identified and
postselected from the ribbon spectrum by their edge
confinement and bulk-gap habitation (in emulating sin-
gle-boundary physics, edge states localized on the bottom
ribbon edge are omitted). The resulting edge dispersion is
shown in Fig. 3(c) for B ¼ 0, 4 and 8 T. At B ¼ 0, all edge
states are nontopological; states at �k travel in opposite
directions and edge connections between bulk bands are
trivial. For B ≠ 0, topological one-way edge states appear
in the band gaps, consistent with the obtained gap Chern
numbers. They connect upper and lower bulk bands,
occasionally by circling the 1D BZ, separated by nontrivial
C̄ðnÞ ≠ 0 gaps. The edge states propagate to the right,
consistent with the sign (chirality) of C̄ðnÞ ≠ 0. They are
topologically protected from backscattering only in the
complete band gap: above it, any defect may scatter them to
either bulk or counterpropagating edge states. The low-
frequency C̄ð1Þ ¼ −1 gap hosts edge states entirely analo-
gous to the edge magnetoplasmons of the uniform sheet—an
edge-state parallel of the bulk dispersion-agreement (∝e

ffiffiffi
k

p
)

between the n ¼ 1 band and the uniform sheet. In contrast,
the high-frequency (≈15 THz) edge state in the C̄ð2Þ ¼ −1
gap results directly from band engineering, and is a
qualitatively new type of edge magnetoplasmon. Finally, a
multimode triple of edge states appears in the C̄ð4Þ ¼ −3
gap. Though the gap is comparatively small, it can be
widened by tuning a=d. Figure 3(d) illustrates the sharp
spatial Bloch mode confinement of the edge states, jϕnkxðrÞj,
for a few select n and kx at B ¼ 8 T. The degree of

confinement correlates positively with the size of the
topological band gap, i.e., implicitly with B, paralleling
the uniform 2D electron gas [20].
The edge states can be efficiently excited by nearby point

sources, as demonstrated in Fig. 4: a y-polarized dipole
near the edge, emitting in the gap center (14.6 THz) of the
n ¼ 1 and 2 bands, excites the edge plasmon at kx ¼ 0
(for computational details, see Supplemental Material
[38]). In the absence of intrinsic material loss, the edge
state propagates unidirectionally to the right with constant
amplitude as seen in Figs. 4(b)–4(d). Topological protec-
tion ensures that even structural defects, such as the sharp
trench in Fig. 4(d), are traversed without backscattering.
The increased edge confinement with mounting magnetic
field is exemplified by Figs. 4(b)–4(c).
The edge state’s topological nature does not shield it from

intrinsic material or radiation loss. While the latter is
negligible, owing to the strongly confined and electrostatic
nature of graphene plasmons [cf. the nearly vertical light
cone in Fig. 2(c)], the former can be appreciable, as in all
plasmonic systems. Finite relaxation γ is readily incorpo-
rated in Eqs. (1) by the substitution ων → ων þ iγ. This
introduces an imaginary spectral component, Imων ≃
− 1

2
γð1þ ξνωc=Reω0

νÞ for γ ≪ Reω0
ν. This impacts the

propagation of edge states in two aspects: first, it blurs
the gap region, allowing small but finite loss-induced
coupling between edge and bulk states (see Supplemental
Material [38]); second, states exhibit a finite lifetime, or,
equivalently, finite propagation length ∝e1=γ, as illustratedin Fig 4(e). Strategies to reduce the relative impact of
intrinsic loss include reducing the lattice constant a, increas-
ing EF, or maximizing the edge state group velocity by
structural design (see Supplemental Material [38]).
In conclusion, we have demonstrated the band topology

of 2D plasmons in periodically patterned graphene under a
T -breaking magnetic field. Multiple sets of topologically

(a)

(b)

(c) (d)

FIG. 3. Plasmonic one-way edge states at lattice terminations. (a) Edge termination of the 2D crystal. (b) Projected 1D BZ and its high
symmetry points. (c) Projected bulk bands (blue) and topologically protected one-way plasmonic edge states (red) along kx for B ¼ 0, 4,
and 8 T, with associated gap Chern numbers C̄ðnÞ (green). (d) Typical mode profiles of edge states in real space at B ¼ 8 T; band
association is indicated by colored markers in (c).
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protected one-way edge plasmons corresponding to non-
trivial gap Chern numbers are discovered. Their operating
frequencies can be as high as tens of terahertz, i.e., in the
far-infrared regime. They can be experimentally verified by
terahertz near-field imaging [66,67] and Fourier transform
infrared spectroscopy [60]. Our findings suggests a new
direction in the synthesis of high-frequency T broken
topological bosonic phases, and can be directly extended to
nonmagnetic schemes based on valley polarization [68,69].
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