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Shallow water wave phenomena find their analogue in optics through a nonlocal nonlinear Schrödinger
(NLS) model in 2þ 1 dimensions. We identify an analogue of surface tension in optics, namely, a single
parameter depending on the degree of nonlocality, which changes the sign of dispersion, much like surface
tension does in the shallowwater wave problem. Using multiscale expansions, we reduce the NLSmodel to a
Kadomtsev-Petviashvili (KP) equation, which is of the KPII (KPI) type, for strong (weak) nonlocality. We
demonstrate the emergence of robust optical antidark solitons forming Y-, X-, and H-shaped wave patterns,
which are approximated by colliding KPII line solitons, similar to those observed in shallow waters.
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Many physically different contexts can be brought
together through a similar modeling and mathematical
description. A common (and rather unlike) example is
water waves and nonlinear optics. Two models are inex-
tricably linked with both subjects: the universal Korteweg–
de Vries (KdV) and nonlinear Schrödinger (NLS) equa-
tions [1]. Furthermore, these models can be reduced from
one to the other [2], thus, suggesting that phenomena
occurring in water waves may also exist in optics. Here,
using such reductions for a nonlocal NLS, we find that
surface tension—which causes fluids to minimize the area
they occupy—has a direct analogue in optics.
Key to our findings are solitons, i.e., robust localized

waves that play a key role in numerous studies in physics [3],
applied mathematics [4], and engineering [5]. A unique
property of solitons is that they feature a particle like
character; i.e., they interact elastically, preserving their
shapes and velocities after colliding with each other. Such
elastic collisions as well as pertinent emerging wave patterns
can sometimes be observed even in everyday life. A
predominant example is the one pertaining to flat beaches:
in such shallow water wave settings, two-line solitons
merging at proper angles give rise to patterns of X-, H-,
or Y-shaped waves, as well as other more complicated
nonlinear waveforms [6]. All these shallow water wave
structures are actually exact analytical multidimensional line
soliton solutions of the Kadomtsev-Petviashvili (KP) equa-
tion (which generalizes KdV to two dimensions (2D) [1,4])
of theKPII type—a keymodel in the theory of shallowwater
waves with weak surface tension [1]. The relative equation
with strong surface tension is referred to as KPI.
Here we show that such patterns can also be observed in

a quite different physical setting, i.e., the one related to
optical beam propagation in media with a spatially nonlocal
defocusing nonlinearity. Such media include thermal non-
linear optical media [7,8], partially ionized plasmas [9,10],
nematic liquid crystals [11,12], and dipolar bosonic quan-
tum gases [13]. It is shown that approximate solutions of

the nonlocal NLS model satisfy, at proper scales, equations
that appear in the context of water waves: a Boussinesq or
Benney-Luke [14], as well as a KP equation. For a
relatively strong (weak) nonlocality, or background ampli-
tude, the latter is found to be a KPII (KPI), similar to the
water wave problem, where a KPII (KPI) results in the case
of small (large) surface tension [1]. Our results, thus,
suggest an analogue of surface tension in optics. Direct
numerical simulations show that approximate antidark line
soliton solutions of the nonlocal NLS constructed from the
KPII line soliton solutions form patterns observable in
shallow water [6]. Pertinent Y-, X-, orH-wave patterns may
be realized in an experimental setup similar to the one used
for the observation of antidark solitons [15].
The evolution of optical beams in nonlinear defocusing

media is governed by the following paraxial wave equation
(cf. Ref. [16] for derivation and relevant adimensionaliza-
tions):

iut þ
1

2
Δu − nu ¼ 0; ð1Þ

where subscripts denote partial derivatives, u is the complex
electric field envelope, Δ≡ ∂2

x þ ∂2
y is the transverse

Laplacian, and real function n denotes the nonlinear, gen-
erally nonlocal, medium response. For instance, in optics, n
is the nonlinear change of the refractive index depending on
the intensity I ¼ juj2 [7,8], in plasmas it is the relative
electron temperature perturbation [9,10], in liquid crystals it
is the optically induced angle perturbation [11,12], and so on.
Here, we consider that n obeys the following diffusion-type
equation:

d2Δn − nþ juj2 ¼ 0; ð2Þ
where d is a spatial scale (setting the diffusion length) that
measures the degree of nonlocality. Note that for d ¼ 0,
Eqs. (1) and (2) reduce to the defocusing 2D NLS equa-
tion [16]. Importantly, Eqs. (1) and (2), the nonlocal NLS
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model of principal interest herein, has been used satisfac-
torily to model experiments on liquid solutions exhibiting
thermal nonlinearities [17,18], while it has also been used in
studies of plasmas [9,10] and nematic liquid crystals [11,12].
The steady-state solution of Eqs. (1) and (2) is composed

by the continuous wave (cw), u ¼ u0 expð−iju0j2tÞ (u0
being an arbitrary complex constant) and the constant
function n ¼ ju0j2. Considering small perturbations of this
solution behaving like exp½iðk · r − ωtÞ�, with r ¼ ðx; yÞ,
we find that the perturbations’wave vector k ¼ ðkx; kyÞ and
frequency ω obey the dispersion relation:

ω2 ¼ jkj2C2ð1þ d2jkj2Þ−1 þ ð1=4Þjkj4; ð3Þ

whereC2 ¼ ju0j2 is thewavevelocity. Here, it is important to
observe the following. First, sinceω ∈ R∀k, the steady-state
solution is modulationally stable. Second, in the long-wave-
length limit (jkj2 ≪ 1), Eq. (3) becomes ω2≈jkj2C2þ
ð1=4Þαjkj4, where α¼1�4d2ju0j2. This approximate
dispersion relation features a striking similarity to the
corresponding (approximate) one for shallow water waves,
namely [1],ω2≈jkj2c20þð1=3Þð3T̂−1Þc20h2jkj4, where c20 ¼
gh is the velocity, g is the acceleration of gravity, h the depth
of water at rest, and T̂ ¼ T=ðρgh2Þ, with ρ being the density
and T the surface tension. Comparing these dispersion
relations, the following correspondence is identified: 3T̂ →
4d2ju0j2, implying that there exists a surface tension ana-
logue in our problem, ∝ d2ju0j2. This effective surface
tension is negative, as is also implied by the fact that the
term ∝ d in the Hamiltonian H ¼ ð1=2Þ RR2 ðj∇uj2−
d2ð∇nÞ2 − n2 þ 2njuj2Þdr of Eqs. (1) and (2) decreases
the potential energy of the system, opposite to the water
wave case where the surface tension increases the respective
potential energy [19].
These arguments can be further solidified by analyzing the

fully nonlinear problem: similar to water waves [1], we will
derive KPI and KPII equations, depending on the strength of
the effective surface tension, i.e., the parameter α, which sets
the dispersion coefficient in KP. This can already be
identified from the linear theory as follows. Using jkj2 ¼
k2x þ k2y, the long-wavelength limit of Eq. (3) reads ω ¼
�Ckx½1þ ðky=kxÞ2�1=2½1þ ðα=4C2Þk2x þOðk2yÞ�, with �
corresponding to right- and left-going waves. Assuming
jky=kxj ≪ 1 and k2y ∼Oðk4xÞ, we find ð1=CÞωkx ¼ �½k2xþ
ðα=4C2Þk4x þ ð1=2Þk2y�. Then, usingω → i∂t, kx;y → −i∂x;y,
the linear PDE associated to this dispersion relation is
∂x½�qt þ Cqx − ðα=8CÞqxxx� þ ðC=2Þqyy ¼ 0. This is a
linear KP equation, with a dispersion coefficient depending
on the effective surface tension through α, similar to shallow
water waves, where the respective dispersion coefficient
depends on T̂ [1].
To derive the full nonlinear version of the KP equation,

we resort to multiple scales. We, thus, consider small-
amplitude slowly varying modulations of the steady state

and seek solutions of Eqs. (1) and (2) in the form of the
asymptotic expansions:

u ¼ u0
ffiffiffi
ρ

p
expð−iju0j2tþ iϵ1=2ΦÞ; ð4Þ

ρ ¼ 1þ
X∞
j¼1

ϵjρj; n ¼ ju0j2 þ
X∞
j¼1

ϵjnj; ð5Þ

where 0 < ϵ ≪ 1 is a formal small parameter, while phase
Φ and amplitudes ρj and nj are unknown real functions of
the slow variables X ¼ ϵ1=2x, Y ¼ ϵ1=2y, and T ¼ ϵ1=2t.
Substituting the expansions (4) and (5) into Eqs. (1) and
(2), we obtain the following results. First, the real part of
Eqs. (1) and (2) yields the leading-order equations at
Oðϵ3=2Þ and OðϵÞ,

ρ1T þ ~ΔΦ ¼ 0; n1 ¼ ju0j2ρ1; ð6Þ

and the first-order equations at Oðϵ5=2Þ and Oðϵ2Þ,

ρ2T þ ~∇ · ðρ1 ~∇ΦÞ ¼ 0;

d2 ~Δn1 − n2 þ ju0j2ρ2 ¼ 0; ð7Þ

connecting the amplitudes ρ1;2 and n1;2 with the phase Φ;
here, ~Δ≡ ∂2

X þ ∂2
Y and ~∇≡ ð∂X; ∂YÞ. Second, the imagi-

nary part of Eq. (1) combined with Eqs. (6) and (7) yields

ΦTT − C2 ~ΔΦþ ϵ

�
1

4
α ~Δ2Φþ 1

2
∂Tð ~∇ΦÞ2

þ ~∇ · ðΦT
~∇ΦÞ

�
¼ Oðϵ2Þ: ð8Þ

Equation (8) incorporates fourth-order dispersion and
quadratic nonlinear terms resembling the Boussinesq and
Benney-Luke [14] equations, which describe bidirectional
shallow water waves [1]. Similar to the water wave
problem, we now use a multiscale expansion method to
derive the KP equation under the additional assumptions of
quasi-two-dimensionality and unidirectional propagation.
In particular, we introduce the asymptotic expansion
Φ ¼ Φ0 þ ϵΦ1 þ � � �, where functions Φl (l ¼ 0; 1;…)
depend on the variables ξ ¼ X − CT, η ¼ X þ CT,
Y ¼ ϵ1=2Y, and T ¼ ϵT. Substituting this expansion into
Eq. (8), at the leading order in ϵ, we obtain the wave
equation Φ0ξη ¼ 0, implying that Φ0 can be expressed as a

superposition of a right-going wave ΦðRÞ
0 depending on ξ

and a left-going one ΦðLÞ
0 depending on η, namely,

Φ0 ¼ ΦðRÞ
0 ðξ;Y; T Þ þΦðLÞ

0 ðη;Y; T Þ: ð9Þ

In addition, at order OðϵÞ, we obtain the equation
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4C2Φ1ξη¼−CðΦðRÞ
0ξξΦ

ðLÞ
0η −ΦðRÞ

0ξ Φ
ðLÞ
0ηηÞ

þ
�
∂ξ

�
−2CΦðRÞ

0T þα

4
ΦðRÞ

0ξξξ−
3C
2
ΦðRÞ2

0ξ

�
−C2ΦðRÞ

0YY

�

þ
�
∂η

�
2CΦðLÞ

0T þα

4
ΦðLÞ

0~η ~η ~ηþ
3C
2
ΦðLÞ2

0~η

�
−C2ΦðLÞ

0YY

�
:

When integrating this equation, secular terms arise from the
square brackets, which are functions of ξ or η alone, not
both. Removal of these secular terms leads to two

uncoupled nonlinear evolution equations for ΦðRÞ
0 and

ΦðLÞ
0 . Then, using ΦT ¼ −n1 obtained from the leading-

order part of Eq. (8) together with Eq. (7), it is found that
the amplitude ρ1 can also be decomposed to a left- and a

right-going wave, i.e., ρ1 ¼ ρðRÞ1 þ ρðLÞ1 , which satisfy the
following KP equations:

∂X

�
�ρðR;LÞ1T −

α

8C
ρðR;LÞ1XXX þ 3C

4
ρðR;LÞ21

�
þ C

2
ρðR;LÞ1YY ¼ 0;

whereX ¼ ξ (X ¼ η) for the right- (left-) going wave. Next,
for right-going waves, we use the transformations T →

−ðα=8CÞT ,Y→
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3jαj=4C2

p
Y, and ρðRÞ1 ¼ −ðα=2C2ÞU and

express KP in its standard dimensionless form [1,4]:

∂X ðUT þ 6UUX þUXXX Þ þ 3σ2UYY ¼ 0; ð10Þ

where σ2 ¼ −sgnα ¼ sgnð4d2ju0j2 − 1Þ. Importantly,
Eq. (10) includes both versions of the KP equation, KPI
and KPII [4]. Indeed, for σ2 ¼ 1 ⇒ α < 0, i.e., for
4d2ju0j2 > 1, Eq. (10) is a KPII equation; on the other
hand, for σ2 ¼ −1 ⇒ α > 0, i.e., 4d2ju0j2 < 1, Eq. (10) is
a KPI equation. Thus, for a fixed cw intensity ju0j2, a strong
(weak) nonlocality d2, as defined by the above inequalities,
corresponds to KPII (KPI); the same holds for a fixed
degree of nonlocality d2 and a larger (smaller) cw intensity
ju0j2. Thus, both our linear and nonlinear analyses establish
a “homeomorphism” between optics and shallow water
waves: in this latter context, weak surface tension (typical
for water waves) corresponds to σ2 ¼ 1 in Eq. (10) (i.e., to
KPII), while strong surface tension is pertinent to σ2 ¼ −1
(i.e., to KPI) [1,4].
Based on the above analysis, we now utilize the exact

solutions of the KP, Eq. (10), and construct approximate
solutions of the original system of Eqs. (1) and (2); such
solutions read

u≈u0

�
1− ϵ

α

2ju0j2
U

�
1=2

expð−iju0j2tÞ

×exp

�
i
2
αϵ−1=2

Z
T

0

UdT 0
�
; n≈ ju0j2−

1

2
αU: ð11Þ

Clearly, for α < 0 (α > 0), i.e., for solutions satisfying KPII
(KPI), u in Eq. (11) has the form of a hump (dip) on top

(off) of the cw background and is, thus, an antidark (dark)
soliton.
Notice that in the local limit of d ¼ 0 (i.e., α ¼ 1), we

solely obtain the KPI model in which line solitons are
unstable: as was shown in plasma physics and hydro-
dynamics [20], line solitons develop undulations and
eventually decay into lumps [21]. In the same venue, but
now in optics, the asymptotic reduction of the defocusing
2D NLS to KPI [22,23] and the instability of the line
solitons of the latter was used to better understand the
transverse instability of rectilinear dark solitons: indeed,
these structures also develop undulations and eventually
decay into vortex pairs [23,24].
Here, we focus on the stable soliton solutions of the KP

equations, namely, the (antidark) line solitons of the KPII
equation and the (dark) lump of KPI. The one-line soliton
solution traveling at an angle to the Y axis is

UðX ;Y; T Þ ¼ 2κ2sech2ðZÞ; ð12Þ

where Z ≡ κ½X þ λY − ð4κ2 þ 3λ2ÞT þ δ�, with κ, λ, and
δ being free parameters. On the other hand, the two-line
soliton can be expressed in the following form:

U ¼ 2∂2
X ln ð1þ eZ1 þ eZ2 þ eZ1þZ2þA12Þ; ð13aÞ

expðA12Þ ¼
4ðκ1 − κ2Þ2 − ðλ1 − λ2Þ2
4ðκ1 þ κ2Þ2 − ðλ1 − λ2Þ2

; ð13bÞ

where Zi ≡ κi½X þ λiY − ð4κ2i þ 3λ2i ÞT þ δi�.
As was shown and observed in the context of shallow

water waves [6], when two-line solitons of the KPII
intersect, a plethora of patterns can emerge. We focus here
on the ones most frequently observed in shallow waters. To
do this, we fix ϵ ¼ 0.2, d2 ¼ 1=3, and u0 ¼ 1 and choose
two-line solitons with specific parameters so that the angle
of interaction will lead to different patterns. We evolve
these initial waves up to t ¼ 600 so that they have enough
time to interact. In Fig. 1, we show the resonant interaction
of two-line solitons resulting in a Y-type wave. The

FIG. 1. AY-type interaction for 2κ1 ¼ κ2 ¼ 1 and λ1 ¼ 3λ2 ¼ 1
4
.
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parameters leading to these interactions are summarized in
the figure captions.
X-type waves can also emerge, as shown in Fig. 2. These

structures are essentially discriminated by their “stems”: a
short, intermediate, and a long stem are, respectively,
depicted in the top, middle, and bottom panels of Fig. 2;
notice that the long stem’s height is higher than that of the
incoming line solitons. In addition, we can produce long
stem interactions where the stem height is lower than the
tallest incoming line soliton; cf. Fig. 3. We refer to these
patterns as H type.
While we chose the above patterns as they appear more

frequently in water, other more exotic, weblike structures

are also supported by the KPII equation [25–27], and may,
in principle, also be produced in optics. Furthermore, these
solutions, while approximate, also hold well beyond the
small-amplitude limit: similar results (not shown here) were
obtained even for ϵ ¼ 0.7, with the only additional effect
being emission of noticeable radiation. This is due to the
robustness of KPII solitons, which is also verified by the
observation of these patterns in shallow water, even after
the waves break [6].
From the viewpoint of experiments, observations of

antidark solitons were reported in Refs. [15,28]. The Y,
X, and H waves may be observed experimentally using a
setup similar to that of Ref. [15]. In particular, one may
employ at first a cw laser beam, which is split into two parts
via a beam splitter. One branch goes through a cavity
system to form a pulse (as happens in typical pulsed lasers);
this pulse branch undergoes phase engineering, i.e., passes
through a phase mask so that the characteristic phase jump
of the antidark soliton is inscribed. Then, the cw and the
phase-engineered pulse are incoherently coupled inside the
nonlocal medium, e.g., a nematic liquid crystal described
by Eqs. (1) and (2). This process forms one antidark soliton,
as in Ref. [15]. To observe the Y, X, orH patterns predicted
above, two such antidark solitons have to be combined
inside the crystal. The angle between the two incident
beams, which should be appropriately chosen so that a
specific pattern be formed, can be controlled by a rotating
mirror in one of the branches.
Finally, let us consider the KPI case (α > 0). KPI also

exhibits line soliton solutions, as above, which are, how-
ever, unstable; it is, thus, most known for its solution that
decays algebraically in both spatial coordinates, i.e., the
lump

UðX ;Y;T Þ

¼ 4
−ðX þaYþ3ða2−b2ÞT Þ2þb2ðYþ6aT Þ2þ1=b2

½ðX þaYþ3ða2−b2ÞT Þ2þb2ðYþ6aT Þ2þ1=b2�2 ;

where a, b are free real parameters. Lumps have not yet
been observed in water. In Fig. 4, we show a direct

FIG. 2. X-type interactions. Top: Short stem for κ1 ¼ κ2 ¼ 1
2

and λ1 ¼ −λ2 ¼ 2
3
. Middle: Intermediate stem for κ1 ¼ κ2 ¼ 1

2
,

λ1 ¼ − 1
4
− 10−2, and λ2 ¼ 3

4
. Bottom: Long stem for κ1 ¼ κ2 ¼ 1

2

and λ1 ¼ −λ1 þ 10−10 ¼ 1
2
.

FIG. 3. An H-type interaction with 2κ1¼κ2¼1, λ1¼1
2
−10−7,

and λ2 ¼ 0.
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simulation for the dark lump, and we refer the reader to the
recent work [29] for details on multilump solutions and
their interactions.
Concluding, we have established a “homeomorphism”

between nonlocal nonlinear media and shallow water
waves. In particular, we have shown that there exists a
surface tension analogue in optics, depending on the
nonlocality strength. This has been identified from the
linear theory and has been rigorously analyzed in the fully
nonlinear regime by the asymptotic reduction of a nonlocal
NLS system to the KP equations. We have demonstrated
that by depending on the effective surface tension, i.e., the
degree of nonlocality, novel structures can appear in optical
nonlocal media. Thus, fascinating phenomena that appear
in water waves can also be observed in optics; an example
studied here is the emergence of X-,H-, or Y-shaped waves
resulting from the resonant interactions of stable line
antidark solitons that have beeb found to exist in strongly
nonlocal media. For weakly nonlocal ones, dark lumps
have also been predicted to occur. The structures predicted
in this work may, in principle, be experimentally observed
either by choosing a material of specific nonlocality or in a
specific material altering the magnitude of the cw back-
ground, in a setup similar to the one used for the
observation of antidark solitons [15].

We thank M. J. Ablowitz, P. J. Ioannou, and E. P. Fitrakis
for many useful discussions.
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