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Classically, the tendency towards spontaneous synchronization is strongest if the natural frequencies of the
self-oscillators are as close as possible.We show that this wisdom fails in the deep quantum regime,where the
uncertainty of amplitude narrows down to the level of single quanta.Under these circumstances identical self-
oscillators cannot synchronize and detuning their frequencies can actually help synchronization. The effect
can be understood in a simple picture: Interaction requires an exchange of energy. In the quantum regime, the
possible quanta of energy are discrete. If the extractable energy of one oscillator does not exactly match the
amount the second oscillator may absorb, interaction, and thereby synchronization, is blocked. We
demonstrate this effect, which we coin quantum synchronization blockade, in the minimal example of
twoKerr-type self-oscillators and predict consequences for small oscillator networks, where synchronization
between blocked oscillators can be mediated via a detuned oscillator. We also propose concrete
implementations with superconducting circuits and trapped ions. This paves the way for investigations
of new quantum synchronization phenomena in oscillator networks both theoretically and experimentally.
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Coupled self-oscillating systems can spontaneously
synchronize, i.e., align their phase and frequency. This
phenomenon [1,2] is observed in a multitude of systems,
ranging from the spontaneous blinking of fireflies in unison
to the firing of neurons in the human brain and technical
applications such as lasers.
The laser is a well-known example of a quantum system

that is described as a self-oscillator. However, its steady
state far above threshold settles into a coherent state, which
is essentially classical [3,4]. Therefore, its synchronization
behavior could be fully described within a semiclassical
picture so far [5,6], which allows for efficient simulations.
Along this line, powerful methods capable of describing
large quantum oscillator arrays have been developed, such
as complex lasing media [7,8], arrays of optomechanical
systems [9,10], and polariton condensates [11–14].
The rapid experimental progress [15–18] in the control

of quantum oscillators and in the engineering of their
dissipative reservoirs [19–25] is opening the opportunity to
study synchronization deep in the quantum regime, where
only a few energy states are populated [26–37]. In this
regime, semiclassical methods can fail [27], and anharmo-
nicity on the level of single quanta has been identified [34]
as a crucial ingredient to demonstrate quantum effects in
synchronization.
In this Letter, we discuss a new class of effects in the

synchronization of quantum self-oscillators: For the sim-
plest case of two coupled self-oscillators, we find that a
finite frequency detuning between different oscillators may
enable synchronization in the quantum regime, while
synchronization between (nearly) identical self-oscillators

is suppressed. Relatedly, two identical oscillators of differ-
ent amplitude are found to synchronize better than oscil-
lators of the same amplitude. These findings are in stark
contrast to our classical expectation and elude any semi-
classical model. The effect generalizes to oscillator net-
works: identical oscillators, while unable to synchronize
directly, can synchronize via a third, detuned, oscillator. We
propose possible implementations in a network of super-
conducting circuits [16,17,38] or using trapped ions [15,39]
to demonstrate the effect experimentally. Our Letter opens
up a novel regime of synchronization with genuine quan-
tum features that can be observed with state-of-the-art
quantum hardware.
Quantum model of the system.—We consider a net-

work of anharmonic oscillators, each described by the
Hamiltonian

H ¼ ωa†a − Kða†Þ2a2; ð1Þ
where a is a bosonic annihilation operator, ω is the
natural frequency of the oscillator, and the Kerr parameter
K quantifies the anharmonicity. Crucially, the quantum
oscillators are subject to dissipation which drives them into
self-sustained oscillations (limit cycles). In the framework
of open quantum systems, this is modeled with a Lindblad
operator L ¼ Lð−Þ þ LðþÞ consisting of damping Lð−Þ and
amplification LðþÞ.
To unravel quantum signatures most clearly, we aim for a

narrow distribution of Fock states in steady state, ideally a
single Fock state. One way to achieve this [40] is with
highly nonlinear dissipators
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where the individual terms induce transitions from Fock
state jni to Fock state jn − 1i. The transition rates
∝ fþ (f−) are highly peaked just below (above) the desired
Fock state [41], as illustrated in Fig. 1(a). Our physical
implementation described below results in

f�ðnÞ ¼
σ2�

ðn − n�Þ2 þ σ2�
; ð3Þ

where n� and σ� are the mean and variance of the
Lorentzian. Choosing nþ near an integer n0 and n− near
n0 þ 1 stabilizes that particular Fock state jn0i, where a
high fidelity is achieved if both σ−, σþ ≪ 1. For simplicity,
we choose from here on σ� ¼ σ; γ� ¼ γ, and n− ¼ nþ þ 1.
This corresponds to the extreme quantum limit of self-

oscillations, where the energy distribution is so sharp that
only a single Fock state is populated. Therefore, due to the
phase-number uncertainty, the phase must be in a super-
position of all phases. In comparison, the state of an
ordinary laser, as described by an incoherent mixture of
coherent states, also has an undefined phase of classical
uncertainty but not as a result of superposition.

The quantum master equation for the density matrix ρ of
a complete network of such self-oscillators (numbered with
index j) that are reactively coupled, is given by

_ρ ¼ −i
�X

j

Hj þ V; ρ

�
þ
X

j

Ljρ; V ¼
X

j;k

Cjka
†
jak;

ð4Þ
where the commutator between A and B is denoted as ½A;B�
and the coupling matrix associated with the interaction V
fulfills Cjk ¼ C�

jk and Cjj ¼ 0.
Classical model of the system.—We will now introduce

the corresponding classical description to be able to compare
the quantum system to its classical limit. The self-oscillators
in Eqs. (4) can be described by the Langevin equations

_αj ¼ −
�
iΩjðαjÞαj þ

ΓjðαjÞ
2

�
αj − iCjkαk þ ηj; ð5Þ

with the classical oscillator amplitudes αj. Here, ΩjðαÞ ¼
ωj − 2Kjjαj2 and ΓjðαÞ ¼ γj−fj−ðjαj2Þ − γj−fjþðjαj2Þ are
the amplitude-dependent frequency and damping rate of the
jth oscillator, and Cjk is the coupling matrix from Eq. (4).
Finally, ηj is a white-noise process with correlator
hηkðtÞηjðt0Þi ¼ δkjδðt − t0ÞγTnT , where nT is the thermal
bath occupation and γT is the coupling rate to the bath. For
conceptual clarity, here, we adopt the fully classical picture
neglecting quantum noise induced by the damping terms
∝ γþ, γ−. Our main conclusions are not affected by this
choice.Aderivation of the semiclassical equations including
quantum noise can be found in Ref. [42].
Synchronization measures.—To quantify synchroniza-

tion between two oscillators, we consider the distribution
PðϕÞ ¼ ∬ 2π

0 dϕ1dϕ2δðϕ1 − ϕ2 − ϕÞpðϕ1;ϕ2Þ of their rela-
tive phase ϕ. For the quantum steady state ρss, we define
pðϕ1;ϕ2Þ ¼ hϕ1;ϕ2jρssjϕ1;ϕ2i with phase states jϕi ¼
1
2π

P∞
n¼0 e

inϕjni [43]. For the classical case, we define
pðϕ1;ϕ2Þ as the probability of ðα1; α2Þ to have phases
ðϕ1;ϕ2Þ in the steady state of Eq. (5). In both cases, we
choose the synchronization measure [44,45]

S ¼ 2πmax
ϕ

½PðϕÞ� − 1; ð6Þ

i.e., a scaled maximum of the relative phase distribution.
Quantum synchronization blockade.—Now, we consider

the self-oscillator depicted in Fig. 1(a) coupled to another
such self-oscillator with all identical parameters, except for
the natural frequencies which are detuned by Δ ¼ ω1 − ω2.
According to classical intuition, the strongest tendency to
synchronize as a function ofΔ as measured by (6) is always
achieved atΔ ¼ 0, where both oscillators are identical. This
picture is confirmed by the numerical solution of Eq. (5),
which is presented in Fig. 2(a). It is consistentwith analytical
results obtained in a study of exciton-polariton condensates
[12], corresponding to the zero-temperature limit of Eq. (5).

(a) (b)

(c)

(d)

FIG. 1. (a) Illustration of an anharmonic oscillator level
structure (grey) with nonlinear amplification (purple) and damp-
ing (green) tuned such that a particular Fock state (here, the state
j2i) is stabilized. The relative thickness of the arrows indicates the
transition rate; steady-state population probabilities are depicted
in black. The corresponding classical system would have a
continuous energy distribution, which is sketched in grey.
(b) Implementation with an array of superconducting anharmonic
oscillators driven by an amplification cavity (purple) and a
damping cavity (green), see main text. (c) Implementation with
trapped ions with excited states transition between ground state
jgi and excited states jei, je0i enabling, respectively, sideband
cooling and sideband amplification of motion as depicted in (d).
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The classical intuition is not valid in the quantum system
described by Eqs. (4). We investigate the same setup with
parameters deep in the quantum regime, where the limit
cycle is essentially stabilized to a single Fock state jn0i.
The numerical result depicted in Fig. 2(b) converges with
decreasing coupling strengths to an analytical perturbation
theory derived in [46]. The phase synchronization measure
is suppressed at Δ ¼ 0, where S has a local minimum.
Instead, phase synchronization is now maximal at two
peaks at Δ ¼ �2K.
We call this phenomenon the quantum synchronization

blockade, as it only occurs deep in the quantum regime,
where almost all population is stabilized to a single Fock
state. The transition fromquantum to classical is visualized in
Fig. 3(a): For a narrow Fock distribution around σ ¼ 0.2, the
two maxima of synchronization appear at Δ ¼ �2K, as just
discussed.With increasingwidthσ, themaximamerge to one
broad resonance around Δ ¼ 0, as classically expected.
In a second scenario, we consider self-oscillators of

identical frequency, now differing only in the amplitude n̄
at which they are stabilized. Oscillator 1 is stabilized to an
integer n̄ ¼ n0 as before, while the amplitude n̄ of oscillator
2 is varied continuously. The result is shown in Fig. 3(b):
In the quantum regime of small σ, synchronization is
maximal at n̄2 ¼ n̄1 � 1; i.e., oscillators with a finite
difference in amplitude are most likely to synchronize.
Again, the classical intuition, that maximal synchronization
will be present for identical oscillators with n̄1 ¼ n̄2, is
confirmed in the classical regime of larger σ.
Thus, in contrast to classical expectation, synchronization

of two quantum oscillators can be enhanced by making the
oscillators more heterogeneous via detuning their frequency

or via a mismatch in their amplitude. The result can be
explained as follows: For twooscillators to interact efficiently,
the process ∝ a†kaj of exchanging one excitation must be re-
sonant by conserving energy. For oscillator j in state jnji
to transfer an excitation to oscillator k initially in state jnki,
it is required thatEðjnj; nkiÞ ¼ Eðjnj − 1; nk þ 1iÞ. Writing
the energy as Eðjnj;nkiÞ¼hnj;nkjHjnj;nki¼ωjnjþωknk−
Kðn2jþn2k−nj−nkÞ, this leads to the two resonances

Δþ 2KΔn� 2K ¼ 0; ð7Þ
where Δ ¼ ωj − ωk and Δn ¼ nj − nk. This resonance
condition is one of the main results of our Letter and is
illustrated in Fig. 3(c), showing the synchronization measure
as a function of bothΔ andΔn in the quantum regime. For an
illustration of the resonance condition in the case of identical
oscillators, see [46].
Equation (7) includes an offset of 2K stemming from the

mismatch of energy in the exchange of a single quantum of
energy described above. Classically, arbitrarily small quanta
may be exchanged, so that the offset does not exist. For the
oscillators to interact efficiently (and thereby to synchron-
ize), an upward transition of oscillator k must be resonant
with a downward transition of oscillator j, or vice versa.
Figure 3(d) shows how the resonances may be resolved for

increasing K. For K ¼ 0, we have the situation of resonant
harmonic oscillators [27], where PðϕÞ is a bimodal distri-
bution at K ¼ 0. Increasing K first leads to a suppression of

(a) (b)

FIG. 2. Synchronization measure S calculated using Eq. (6) as a
function of the detuning Δ between two oscillators. All other
parameters are identical for both oscillators. Panel (a) shows the
result of classical Monte Carlo simulations of Eq. (5), where the
width of the line indicates the statistical error. Panel (b) shows
results from the numerical steady-state solution of the quantum
master equation (4). Classical parameters: γTnt ¼ 0.1γ, σ ¼ 0.2,
nþ ¼ 2, n− ¼ 3, K ¼ 2γ, V ¼ 0.1γð1

6
; 1
4
; 3
8
; 1
2
Þ. Quantum param-

eters: σ ¼ 0.2, nþ ¼ 2, n− ¼ 3, K ¼ 10γ, V ¼ γð0.05;
0.2; 0.35; 0.5Þ. In both panels γ1� ¼ γ2� ¼ γ. In first-order
perturbation theory (dashed black line), the height of the maximal
peak is proportional to the coupling V [46]. Plotting S in units of
V for the numerical results, the height of the peak decreases with
increasing V, where higher-order effects play a role. The noise
level is chosen such that the effect of the thermal noise in panel
(a) is approximately as strong as the quantum noise in panel (b).

(a) (b)

(c) (d)

FIG. 3. Plots of synchronization measure S from Eq. 2.
(a) Identical oscillators differing only in frequency. Inset shows
cuts of S scaled by σ at σ ¼ 0.2, 0.4, 0.6, 0.8 in black, blue, red,
green. (b) Identical oscillators differing only in amplitude.
(c) Overview of these resonances in Δn and Δ. (d) Resonances
as a function of the Kerr nonlinearity K. Parameters: In the upper
panels nþ1 ≡ 4, n−j ¼ nþj þ 1, V ¼ 0.1γ,K ¼ γ=σ�, γ1� ¼ γ2� ¼
γ. In (a), nþ2 ¼ 4, and in (b), ω1 ¼ ω2. In the lower panels,
σ� ¼ 0.2, and all other parameters are as above.
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the resonance and, then, to a splitting at Δ ¼ �2K. In this
regime, only one maximum of PðϕÞ survives.
Oscillator networks.—Having established the quantum

synchronization blockade, we now use this understanding
to explore consequences for networks of oscillators. In the
following, we focus on small networks, as these are easiest
to implement experimentally. Consider the three-oscillator
network depicted in the inset of Fig. 4(c), where two
identical oscillators A and B are coupled indirectly by
connecting them with coupling strength V1 to an oscillator
C which has a relative detuning Δ with respect to A and B.
First, we look at the case where the direct coupling V2

between the two identical oscillators is zero. As shown in
Fig. 4(a), resonances occur at Δ ¼ �2K for the synchro-
nization between detuned oscillators, as expected from the
two-oscillator case. Figure 4(b) shows that identical oscil-
lators can now synchronize via mediation of the detuned
oscillator, again with resonances at Δ ¼ �2K. In this way,
the synchronization blockade can be lifted. This finding is
also confirmed for the larger network of four oscillators,
where two pairs of identical oscillators are connected in a
ring in alternating order, see [46].
Conversely, as shown in Figs. 4(c) and 4(d), turning on a

coupling V2 between the identical oscillators can suppress
synchronization. This effect is most pronounced for iden-
tical oscillators, for which a strip of suppressed synchro-
nization appears along V1 ∝ V2.

Implementation.—Nonlinear damping of the form (3) can
be naturally achieved for an anharmonic oscillator mode a
coupled to a linear cavity mode c by coupling the number
∝ c†c of the cavity to the quadrature aþ a†. Driving the
cavity on the red (blue) sideband will lead to a positive
(negative) damping [40,42]. Because of the anharmonic
level structure, the position of the sidebands depends on the
oscillator amplitude. Therefore, in contrast to ordinary
sideband cooling, the strength of both damping and ampli-
fication nonlinearly depends on the oscillation amplitude.
In a rotating frame of the cavity drive E, the Hamiltonian

is given byHc¼−δc†cþEðcþc†Þþg0c†cðaþa†Þ, where
δ is the laser detuning and g0 is the coupling rate. Defining
g ¼ g0

ffiffiffiffiffiffiffiffiffiffiffi
hc†ci

p
, this can be linearized in the regime of large

amplitudes (hc†ci≫1) as Hc¼−δc†cþgða†þaÞðcþc†Þ.
Assuming that the cavity decay rate κ fulfills g ≪ κ such that
the cavity can be adiabatically eliminated, the parameters
of our dissipators (2) are approximately given by [40]
γ ¼ 4g2=κ, σ ¼ κ=8K, and n� ¼ �ðδ� − ω0Þ=2K.
Thus, to achieve small σ, and thereby stabilize a Fock

state, a large anharmonicity to cavity noise ratio K=κ ≳ 1 is
required. As depicted in Fig. 3(d) and reflected in the
perturbation theory from [46], K=γ ≳ 1 is also necessary.
As γ ¼ 4g2=κ and g ≪ κ, we have the hierarchy κ > γ, and
therefore, only K=κ ≳ 1 remains as the feasibility condition
for our specific implementation. This condition is a
challenging requirement on the experimental setup. For
instance, optomechanical systems, while highly coherent,
still lack strong enough anharmonicity. While this may be
overcome in the future, e.g., using auxiliary coupling to a
Cooper pair transistor [47], we propose an implementation
using superconducting circuits and, alternatively, trapped
ions. In both platforms, a large anharmonicity K ≫ κ; γ can
be achieved with state-of-the-art technology.
An implementation using superconducting circuits is

schematically depicted in Fig. 1(b) for the case of two
capacitively coupled self-oscillators aj. To implement
larger networks, the array can be extended along the greyed
out coupling capacitors. One choice of self-oscillators are
transmon qubits [16] which are sufficiently anharmonic
while offering a long enough coherence time. The auxiliary
cavities for amplification (bj) and damping (cj) are coupled
to the self-oscillator via an interaction of optomechanical
form, c†cðaþ a†Þ. This can be brought about by embed-
ding a SQUID in the auxiliary cavity [38]. The particular
Lorentzian form (3) was assumed as a concrete example,
but the scheme is quite general; i.e., any other setup with
both nonlinear damping and amplification could be used;
any other means of Fock state stabilization such as
[23,48,49] will be equally suitable for our purposes.
An implementation using trapped ions is depicted in

Fig. 1(c). Ions trapped in adjacent highly anharmonic
potentials [39] can become self-oscillators with dissipation
engineered as follows: The roles of the cavities for
amplification and damping are now played by the internal

(a) (b)

(c) (d)

FIG. 4. Synchronization measure S for the network of three
oscillators depicted in the inset of panel (c). In the upper panels,
two identical oscillators are connected indirectly via an oscillator
C with detuning Δ, while the direct link V2 ¼ 0. In the lower
panel, the direct link V2 is also turned on and Δ≡ 2K. In both
panels, nþ1 ≡ 1, n−j ¼ nþj þ 1, K ¼ 10γ, γ1� ¼ γ2� ¼ γ. In both
rows, the left panel shows synchronization between different
oscillators and the right panel between identical oscillators. We
conclude, from the upper panels (a) and (b), that identical
oscillators can be synchronized indirectly via a detuned oscillator.
The lower panels indicate that increasing the direct coupling can
even decrease synchronization for a strong enough indirect link:
In (c) the contour lines bend to the right, while in (d), a strip of
suppressed synchronization appears.
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level structure of the ion, with one transition driven on the
blue sideband and another transition on the red sideband.
The use of two transitions is similar to the schemes [27,44]
to implement self-oscillators with ions. The ions are
naturally coupled via the Coulomb interaction [44,50,51].
We note that, to observe the effect presented here, each

node of the network needs to have an anharmonic spectrum
consisting of at least three levels, excluding arrays of
harmonic oscillators or qubits [46].
Conclusion and outlook.—To conclude, we have

described a novel effect referred to as the quantum synchro-
nization blockade, which prevents identical nonlinear oscil-
lators from synchronizing deep in the quantum regime. This
is in stark contrast to the classical regime, where oscillators
synchronize best when on resonance. Complementarily, we
have demonstrated that detuned auxiliary oscillators can lift
this blockade by indirectly mediating synchronization
between identical oscillators. These effects will be observ-
able in state-of-the-art quantum systems such as super-
conducting circuits and trapped ions, for which we have
proposed concrete implementations. Thus, our Letter opens
a new perspective for the exploration of synchronization in
Bose-Hubbard–van der Pol-type networks.
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