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The d-dimensional long-range Ising model, defined by spin-spin interactions decaying with the
distance as the power 1=rdþs, admits a second-order phase transition with continuously varying critical
exponents. At s ¼ s�, the phase transition crosses over to the usual short-range universality class. The
standard field-theoretic description of this family of models is strongly coupled at the crossover. We find a
new description, which is instead weakly coupled near the crossover, and use it to compute critical
exponents. The existence of two complementary UV descriptions of the same long-range fixed point
provides a novel example of infrared duality.
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Introduction.—Statistical models with long-range inter-
actions exhibit rich critical behavior with continuously
varying exponents. Here, we will focus for definiteness on
the long-range Ising model (LRI) in d ¼ 2 and d ¼ 3
dimensions [1], with ferromagnetic interaction between
spins decaying as a power of their distance as 1=rdþs,
where s > 0 for the thermodynamic limit to be well defined
[2]. There are three critical regimes, depending on the value
of the microscopic parameter: (i) the mean-field regime for
s < d=2, (ii) the intermediate regime for d=2 < s < s�, and
(iii) the short-range regime for s > s�. Our primary goal
will be to elucidate the long-range to short-range crossover
at s ¼ s�, but let us first briefly review all three regimes.
The most convenient way to study the long-distance

behavior is to replace the lattice model with a continuum
field theory in the same universality class. Apart from the
usual quadratic and quartic terms that are both local, the
action includes a Gaussian nonlocal term, with a negative
sign for the considered ferromagnetic case [3]

S ¼ −
Z

ddxddy
ϕðxÞϕðyÞ
jx − yjdþs þ

Z
ddx½tϕðxÞ2 þ gϕðxÞ4�:

ð1Þ

The nonlocal term by itself describes a mean-field theory in
which ϕ has the dimension ½ϕ�UV ¼ ðd − sÞ=2 [4]. The
quadratic term is always relevant, and the transition is
reached by tuning its coefficient t to zero [5]. The quartic

term is irrelevant for s < d=2, explaining why the transition
becomes mean field below this value. On the other hand,
for s > d=2, the quartic interaction induces a nontrivial
RG flow. In the regime (ii) d=2 < s < s�, this flow ends
in an interacting long-range fixed point (LRFP). General
composite operators, such as ϕ2, acquire nontrivial anoma-
lous dimensions, as befits an interacting fixed point.
However, the dimension of ϕ is controlled by a nonlocal
term and is therefore, not renormalized: ½ϕ�LRFP ¼ ½ϕ�UV ¼
ðd − sÞ=2 at the LRFP. Finally, the long-range to short-
range crossover is expected to happen [6] when ½ϕ�LRFP,
decreasing with s, reaches the short-range Ising fixed
point (SRFP) dimension ½ϕ�SRFP. In other words, the
dimension of ϕ is continuous at the crossover, fixing
s� ¼ d − 2½ϕ�SRFP ≡ 2 − ηSRFP.
The picture that we have just reviewed is considered

standard since the original work by Fisher et al. [7] and its
refinement by Sak [6,8], but while the crossover from the
mean field to the intermediate regime is well understood,
the same cannot be said of the long-range to short-range
crossover. For s slightly above d=2, the quartic interaction
is weakly relevant and one can study the flow in perturba-
tion theory, computing physical quantities in a systematic
expansion in ϵ ¼ 2s − d. By contrast, a perturbative
description of the long-range to short-range crossover is
lacking at present. The nonlocal perturbation

OSak ¼
Z

ddxddy
σðxÞσðyÞ
jx − yjdþs ; ð2Þ

where σ ≡ ϕSRFP is the SRFP spin field, has been proposed
[8,9] as a way to analyze the short-range fixed point
stability. The critical s ¼ s� is precisely where this pertur-
bation crosses from relevant to irrelevant [8,9]. For s < s�,
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the flow from the short-range fixed point perturbed by
OSak should end in the long-range fixed point. The RG
flow diagram, which summarizes the standard picture,
is shown in Fig. 1(a). If s is just slightly below s�, it
should, in principle, be possible to study the flow pertur-
batively because the perturbation OSak is weakly relevant.
However, it is unclear how the rules of conformal pertur-
bation theory should be adapted to this nonlocal case.
One may dismiss this lack of computability as a technical

problem, but there is a related conceptual puzzle. If the
crossover is continuous, the entire operator spectrum should
be continuous, not just ϕ. Consider, however, ϕ3. The
nonlocal equation of motion that follows from the action
(1) relates ϕ and ϕ3, implying that at the IR fixed point, their
dimensions must obey [10] the “shadow relation”

½ϕ�LRFP þ ½ϕ3�LRFP ¼ d: ð3Þ

This means that at the crossover, there should be a Z2 odd
operator of dimension d − ½ϕ�SRFP, in contradiction with the
well-established fact that the short-range Ising fixed point
contains a single relevant Z2 odd scalar. A similar puzzle
arises for the stress tensor operator. A local conserved stress
tensor Tμν exists in the short-range fixed point. As we move
to the long-range regime, this operator is expected to acquire
an anomalous dimension so that it is no longer conserved.
The divergence Vν ¼ ∂μTμν is thus, a nontrivial local
operator at the long-range fixed point, but where did it
come from? The short-range Ising fixed point does not
contain a vector conformal primary operator of the dimen-
sion exactly dþ 1 that could play the role of Vμ [11].

Our proposal.—The need to resolve the above difficul-
ties leads us to suggest that the crossover happens not just
to the short-range fixed point, but rather to the short-range
fixed point plus a decoupled Gaussian field χ, a theory we
dub “SRFPþ χ.” In our proposal, the flow from SRFPþ χ
to the long-range fixed point is driven by the perturbation

g0

Z
ddxOðxÞ; O ¼ σ · χ: ð4Þ

The standard picture is recovered by integrating out χ,
which generates precisely the nonlocal perturbation OSak
discussed above [12]. This fixes χ to have the dimension
½χ� ¼ ðdþ sÞ=2 so that

½O� ¼ ½χ� þ ½σ� ¼ d − δ; δ ¼ ðs� − sÞ=2; ð5Þ
crossing from relevant to irrelevant at the same location
as before. We emphasize, however, that χ is not just a
theoretical construct introduced to represent the nonlocal
perturbation OSak. Rather, it is a physical field, which can
be thought of as a remnant of the long-range interactions of
the original model (1) [13].
The new RG flow diagram is shown in Fig. 1(b). In the

intermediate regime d=2 < s < s�, two distinct RG flows
have the long-range fixed point as their common IR
endpoint: the standard flow (1) from the mean-field theory,
which is weakly coupled near the lower end of the
intermediate regime (ϵ → 0), and our newly proposed flow
emanating from the SRFPþ χ theory, which is weakly
coupled near the crossover (δ → 0). This fits the classic
pattern of a field-theoretic infrared duality.
Beta-function.—In the rest of this Letter, we will use the

flow from SRFPþ χ, perturbed by (4), to obtain a new
quantitative understanding of the long-range fixed point
near the crossover. A more detailed presentation of our
results will appear in [14].
As O is a local operator, we can employ the standard

framework of conformal perturbation theory [15–17]. To
recall briefly, consider the order n perturbative correction to
the observable Oð∞Þ ¼ limx→∞x2ΔOOðxÞ,

gn0
n!

Z
ddx1…ddxnhOðx1Þ…OðxnÞOð∞Þi: ð6Þ

Divergences due to colliding xi require us to introduce a
regulator, which is most easily taken to be a short-distance
cutoff a. The beta function is found by demanding that (6)
be independent of a when expressed in terms of the
renormalized coupling g ¼ aδg0. It is therefore related to
the logarithmically divergent part of the integral [18].
In our case, βðgÞ ¼ −δgþ β3g3 þOðg5Þ, as all even-

order contributions vanish by the Z2 × Z2 symmetry of
the SRFPþ χ theory (independent sign flips of σ and χ).
Extracting the logarithmic divergence, the coefficient β3 is
expressed as an integral of the four-point function in
particular kinematics [19]

(a)

(b)

FIG. 1. RG flows corresponding to (a) the standard picture and
(b) our proposal.
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β3 ¼ −
1

6
Sd

Z
ddxhOð0ÞOðêÞOðxÞOð∞Þi: ð7Þ

Here, ê is an arbitrary unit-length vector, and Sd is the unit
sphere area. Although this integral is still infinite due to the
relevant operators in theO ×O operator product expansion
(OPE), its divergences at x → 0, ê, ∞ are powerlike and
unrelated to the running of g. To handle them, we exploit
the symmetry between the three channels to write (7) as an
integral over the regionR ¼ fy∶jyj < 1; jyj < jy − êjg. As
explained in [19], this isolates y → 0 as the single place
where we have to subtract pure powers.
The four-point function of O factorizes into the product

of the four-point functions of σ and χ. The four-point
function of χ, being Gaussian, is given by the sum of three
independent Wick contractions, while the four-point func-
tion of σ is nontrivial. In d ¼ 2, it is known in closed form,
thanks to the exact solution of the corresponding minimal
model CFT [20], while in d ¼ 3, it is known approximately
with high precision from the numerical conformal bootstrap
[19,21,22]. For the d ¼ 3 computation, we have used data
from the 3D Ising spectrum up to dimension Δ� ¼ 8 [22].
Performing numerically the steps outlined above, we

have found [23]

β3 ¼ 1.2684040ð5Þ ðd ¼ 2Þ ð8Þ

β3 ¼ 12.26ð3Þ ðd ¼ 3Þ: ð9Þ

The sign of β3 was not manifest in the above calculations
since the regulated integrals are not sign definite. Still, we
see that β3 is positive in both d ¼ 2 and d ¼ 3. This is a
basic check of our proposal: as expected, O is marginally
irrelevant at the crossover. As δ > 0, we have an IR fixed
point at g2� ¼ δ=β3 þOðδ2Þ.
Anomalous dimensions.—To study the renormalization

of an operator Φ, we are instructed to consider the order n
correction to its two-point function:

gn0
n!

Z
ddx1 � � � ddxnhΦð0ÞOðx1Þ � � �OðxnÞΦð∞Þi: ð10Þ

Using point splitting with the cutoff a once again, loga-
rithmic divergences are absorbed into ZΦðg; aÞ so that
the renormalized operators ΦR ≡ ZΦðg; aÞ−1Φ have finite
correlators. We have ZΦ ¼ 1þ ðg2=2ÞB logð1=aÞ þOðg4Þ
as a consequence of the Z2 × Z2 symmetry. Equivalently,
the anomalous dimension at the fixed point is given by
γΦ ¼ −ðg2�=2ÞBþOðg4�Þ. Isolating the logarithmic diver-
gence of (10),

B ¼ Sd

Z
ddxhΦð0ÞOðxÞOðêÞΦð∞Þi: ð11Þ

This power divergent expression can be regulated using the
same region R defined for the beta function. The only

difference is that one of the three channels will need the
positions in the four-point function interchanged.
In complete analogy with the standard ϕ4 flow, we can

make two robust predictions for the σχ flow. First, the
dimension of χ is not renormalized, being controlled by a
nonlocalkinetic term.Second,using thenonlocal equationof
motion that relatesσ andχ,weconclude that their dimensions
must obey in the IR a shadow relation analogous to (3)

½χ� þ ½σ� ¼ d: ð12Þ
It is easy to check that these predictions hold to leading order
in conformal perturbation theory, for arbitrary d.
On the other hand, to find, e.g., the anomalous dimen-

sion γε of the energy operator, we need a careful evaluation
of (11). For d ¼ 2, we were able to prove analytically that
γε vanishes at the leading order Oðg2�Þ, though we expect
higher-order corrections to be present

γε ¼ Oðg4�Þ ðd ¼ 2Þ: ð13Þ
For d ¼ 3, we found numerically

γε ¼ 3.3ð5Þg2� þOðg4�Þ ðd ¼ 3Þ; ð14Þ
which corresponds to a central value of B ¼ −6.6 in (11).
Recombination.—The computation of the anomalous

dimension of the stress tensor deserves a special discussion.
The SRFPþ χ theory consists in the UVof two decoupled
sectors. The SRFP is a local theory, with a conserved local
stress tensor Tμν, while the nonlocal χ sector has no
analogous operator. Clearly, the perturbation by σ · χ
couples the two sectors. Locality is lost and Tμν acquires
an anomalous dimension γT at the LRFP. While γT can be
computed by the general method outlined above, a more
illuminating strategy is to leverage the phenomenon of
multiplet recombination. (For other recent uses of this
strategy in CFT, see, e.g., [24–27].)
The local stress tensor of the SRFP satisfies the con-

servation equation ∂μTμν ¼ 0, meaning that some of his
descendants are zero—the stress tensor is the primary of a
short multiplet of the conformal algebra. Unitarity implies
that γT ¼ 0 if and only if ∂μTμν ¼ 0, so the presence of an
anomalous dimension at the LRFP must be accompanied
by a failure of the conservation equation

∂μTμν ∝ Vν ≠ 0: ð15Þ

The short Tμν multiplet becomes long by “eating” the Vν

multiplet. The vector operator Vμ must exist in the UV
theory as well; this was puzzling in the standard picture. In
our picture, we can instead easily construct it. The unique
candidate is

Vν ¼ σð∂νχÞ −
Δχ

Δσ
ð∂νσÞχ; ð16Þ
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where the relative normalization is fixed by requiring that it
be a conformal primary. We can then write

∂μTμν ¼ bðgÞVν ¼ b1gVν þOðg2Þ; ð17Þ

which implies

h∂μTμνðxÞVρðyÞig ≈ b1g�hVνðxÞVρðyÞi0: ð18Þ

The rhs of (18) is easy to evaluate, while the lhs may be
found with one insertion of O and use of the Ward identity.
This fixes b1 ¼ Δσ=d. We also have

h∂μTμνðxÞ∂ρTρσð0Þig ≈ b21g
2�hVνðxÞVσð0Þi0: ð19Þ

The lhs is the standard two-point function of conformal
primaries, with dimension dþ γT differentiated twice.
Dropping higher powers of g�, (19) reduces to

γT ¼ 2S2d
cT

Δσðd − ΔσÞ
d2 þ d − 2

g2� þOðg4�Þ: ð20Þ

For d ¼ 2, we have checked that the general approach to
anomalous dimensions, based on computing the principal
value (11), yields a result for γT in agreement with (20).
Duality.—A pithy way to describe our picture is as an

infrared duality relating the ϕ4 and σχ flows. We claim that
both flows end at the same long-range IR fixed point.
Interestingly, the nonlocal equations of motions give
analytic control over several important quantities and allow
precise checks of our proposed duality. The most basic
entry of the duality dictionary is the IR identification

ϕ ↔ σ; ϕ3 ↔ χ: ð21Þ

Combining the nonrenormalization of the dimensions of ϕ
and of χ with the shadow relations (3), (12), one easily
checks that the dimensions of the dual pairs agree at the IR
fixed point [28],

½ϕ� ¼ ½σ� ¼ d − s
2

; ½ϕ3� ¼ ½χ� ¼ dþ s
2

: ð22Þ

The nonlocal equations of motion can also be used to relate
OPE coefficients involving shadow pairs of operators. Let
O1 and O2 denote two arbitrary scalar primary operators
and λ12 ~ϕ (respectively, λ12 ~ϕ3) their three-point coupling,
with the unit-normalized operator ~ϕ (respectively, ~ϕ3). It
was shown in [10] that the ratio λ12 ~ϕ3=λ12 ~ϕ is given by a
universal formula that depends only on d, on the operator
dimensions, and on the normalization of ϕ. An analogous
reasoning in the dual flow leads to a similar formula for
λ12~χ=λ12~σ, which must, in fact, agree with λ12 ~ϕ3=λ12 ~ϕ if the
duality is to hold. Remarkably, it does, but only if the
normalizations of ϕ and χ are related in a precise way.
Defining

hϕðxÞϕð0Þi¼1þρðϵÞ
jxj2Δϕ

; hχðxÞχð0Þi¼1þκðδÞ
jxj2Δχ

; ð23Þ

compatibility of the OPE ratios demands

κðδÞ
1þ κðδÞ ¼

1þ ρðϵÞ
ρðϵÞ : ð24Þ

Since κðδÞ ¼ OðδÞ for δ → 0, this predicts that the nor-
malization of ϕ vanishes as we approach the crossover,
where the description in terms of the σχ flow becomes
weakly coupled. Conversely, since ρðϵÞ ¼ Oðϵ2Þ, the
normalization of χ must vanish for ϵ → 0, where the ϕ4

flow becomes weakly coupled. That the normalization of ϕ
should vanish at the continuous crossover has been
previously noticed in [10] and it was also argued in
[29], using a large N expansion.
Discussion.—In this Letter, we have put forward a new

theory for the long-range to short-range crossover. Prior to
our work, the understanding of this crossover was incom-
plete at best. Crucially, our new qualitative picture allowed
us to greatly advance the quantitative side of the story,
hitherto nonexistent. We obtained a number of predictions
for the critical exponents near the crossover, which, in
principle, can be confirmed by Monte-Carlo simulations
and perhaps even experiments. Also, the existence of χ
leads to experimentally verifiable predictions even in the
short-range regime s > s�, where it is decoupled. The point
is that it is decoupled from the short-range fixed point
fields, but not from the lattice operators, so it should be
possible to detect χ via lattice measurements.
While we have focused on the long-range Ising model,

it’s clear that most of the learned lessons apply to the OðNÞ
case as well. Still more generally, our σχ-flow construction
can be used with any CFT in place of the SRFP. Just pick
a scalar CFT operator, call it σ again, of dimension Δ,
and couple it to a nonlocal Gaussian field χ of dimension
d − Δ − δ, δ ≪ 1. If the quantum correction to the beta
function has the right sign, we will then obtain a continuous
family (parametrized by δ) of nonlocal conformally invari-
ant theories, which are deformations of the original local
CFT. It will be unitary if the original CFTwas unitary and if
χ is above the unitarity bound. One interesting application
of this idea is to the long-range Potts model. We find it
likely that explorations along these lines will lead to other
examples of nonlocal IR dualities.
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