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In quantum many-body theory, all physical observables are described in terms of correlation functions
between particle creation or annihilation operators. Measurement of such correlation functions can
therefore be regarded as an operational solution to the quantum many-body problem. Here, we demonstrate
this paradigm by measuring multiparticle momentum correlations up to third order between ultracold
helium atoms in an s-wave scattering halo of colliding Bose-Einstein condensates, using a quantum many-
body momentum microscope. Our measurements allow us to extract a key building block of all higher-
order correlations in this system—the pairing field amplitude. In addition, we demonstrate a record
violation of the classical Cauchy-Schwarz inequality for correlated atom pairs and triples. Measuring
multiparticle momentum correlations could provide new insights into effects such as unconventional
superconductivity and many-body localization.
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In quantum physics, fully understanding and character-
izing complex systems, comprising a large (often macro-
scopic) number of interacting particles, is an extremely
challenging problem. Solutions within the standard frame-
work of (first-quantized) quantum mechanics generally
require the knowledge of the full quantum many-body
wave function. This necessitates an exponentially large
amount of information to be encoded and simulated using
the many-body Schrödinger equation. In an equivalent
(second-quantized) quantum field theory formulation, the
fundamental understanding of quantum many-body sys-
tems comes through the description of all physical observ-
ables via correlation functions between particle creation
and annihilation operators. Here, the exponential complex-
ity of the quantum many-body problem is converted into
the need to know all possible multiparticle correlation
functions, starting from two-, three-, and increasing to
arbitrary N-particle (or higher-order) correlations.
From an experimental viewpoint, an operational solution

to the quantum many-body problem is therefore equivalent
to measuring all multiparticle correlations. In certain cases,
however, knowing only a specific set of (few-body or
lower-order) correlations is sufficient to allow a solution of
the many-body problem to be constructed. This was
recently shown for phase correlations between two coupled
one-dimensional (1D) Bose gases [1]. Apart from facili-
tating the description of physical observables, characteriz-
ing multiparticle correlations is important for introducing
controlled approximations in many-body physics, such as
the virial- and related cluster-expansion approaches that
rely on truncation of the Bogolyubov-Born-Green-
Kirkwood-Yvon hierarchy [2,3]. Momentum correlations

up to sixth order [4] and phase correlations up to eighth [1]
and tenth order [5] have so far been measured in ultracold
atomic gases. More generally, multiparticle correlation
functions have been used to experimentally characterize
the fundamental properties of various systems, such as
thermal Bose and Fermi gases [6], weakly and strongly
interacting 1D Bose gases [7–9], tunnel-coupled 1D tubes
[1,5], collision halos [10–12], and phenomena such as
prethermalization [13] and transverse condensation [14].
Correlations between multiple photons are also routinely
used in numerous quantum optics experiments including
ghost imaging [15,16], defining criteria for nonclassicality
[17,18], analyzing entangled states generated by parametric
down conversion [19], and characterizing single photon
sources [20].
Here, we demonstrate an experimental solution of the

many-body problem as outlined above by measuring
second- and third-order correlations between momentum-
correlated atoms in a collisional halo between two Bose-
Einstein condensates (BECs). The halo is generated by
spontaneous s-wave scattering of two colliding BECs
[10,12,21], creating a spherical shell of pair-correlated
atoms (see Fig. 1). After a time-of-flight expansion, we
detect the positions of individual atoms, which are mapped
back to the initial momenta of the atoms directly after the
collision [47]. This means that we reconstruct momentum
correlation functions from the momenta of individual atoms
with full 3D resolution. Thus, our detector setup can be
regarded as a quantum many-body momentum microscope,
complementary to the quantum gas in situ microscopes
created using optical lattices [48–53] or arrays of optical
tweezers [54]. We characterize and compare all possible
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back-to-back and collinear atomic correlation functions for
two and three atoms, showing the relationship between the
different correlation functions and demonstrating a record
violation of the classical Cauchy-Schwarz inequality
between the peak values of correlation functions.
The experiments start with a BEC of ∼106 4He� atoms

magnetically trapped in the mJ ¼ þ1 sublevel of the long
lived metastable (23S1) state [55]. The s-wave scattering
halos of correlated pairs are produced via a two-step
process. First, we transfer ∼95% of the BEC atoms to
the untrapped mJ ¼ 0 sublevel with a Raman pulse, giving
the atoms a downward (i.e., along the ẑ direction) momen-
tum of K ¼ −

ffiffiffi

2
p

k0ẑ [21] in wave number units, where
k0 ¼ 2π=λ and λ ¼ 1083.2 nm is the wavelength of a
diffraction photon. The untrapped BEC is then diffracted
using a second pulse into two or more diffraction orders,
using either Bragg or Kapitza-Dirac diffraction [21].
Adjacent pairs of diffracted condensates then collide,
producing spherical halos of spontaneously scattered atom
pairs via s-wave collisions [10]. Each halo has a radius in
momentum space of kr ≈ k0=

ffiffiffi

2
p

and a radial Gaussian
width of w ≈ 0.03kr. The average mode occupancy in each
halo ranges from n ¼ 0.0017ð17Þ to n ¼ 0.44ð2Þ. As the
scattering in our experiment is always in the spontaneous
pair-production regime [21], the scattering halo can be

approximated by an overall quantum many-body state that
is the product of independent two-mode squeezed vacuum
states analogous to those produced by parametric down-
conversion in quantum optics.
The expanding halos then fall ∼850 mm (time of flight

[TOF] ∼416 ms) onto a multichannel plate and delay-line
detector. Because of the 19.8 eV internal energy of the 23S1
state, the individual positions of atoms can be reconstructed
in 3D, with a spatial resolution of ∼120 μm in x, y
(momentum resolution ∼0.0044kr) and a temporal reso-
lution along z of ∼2 ns (≡8 nm or 3 × 10−7kr). As we are
interested in correlations between atoms in different
momentum modes, we convert position and time to
momentum centered on each halo [21].
From the reconstructed momentum for each atom, we

construct various momentum correlation functions from
coincidence counts between atoms within each experimen-
tal run that are averaged over all runs [21]. First, we
look at momentum correlations between three atoms with
momenta k3, k1 ¼ −k3 þ Δk1, and k2 ¼ −k3 þ Δk2,
i.e., the second two atoms on the opposite side of the
halo to the first [see Figs. 2(a)–2(c) for illustration]. We

define the relevant correlation function as ḡð3ÞBBðΔk1;Δk2Þ
and refer to it as back-to-back (BB), which is averaged
with respect to k3 over the halo and spherically integrated
with respect to the directions of vectors Δk1 and Δk2.
Thus, it is a function of the absolute values Δk1 ¼ jΔk1j
and Δk2 ¼ jΔk2j [21].
Figure 2(g) shows a typical surface plot of

ḡð3ÞBBðΔk1;Δk2Þ for the s-wave halo generated by
Kapitza-Dirac orders l ¼ ð−2;−3Þ. This surface plot also
contains other many-body correlation functions within it,
shown schematically in Figs. 2(a)–2(c). WhenΔk2 ¼ 0, we

can plot ḡð3ÞBBðΔk1; 0Þ [red line in Fig. 2(g)], which will

asymptotically approach ḡð2ÞBBð0Þ—the two-particle correla-
tion function with one atom on each side of the halo—for
Δk1 ≫ σBB, where σBB is the two-particle back-to-back
correlation length. Taking Δk2 ≫ σBB, we can also plot

ḡð3ÞBBðΔk1;Δk2 ≫ σBBÞ (blue line), which is equivalent to

ḡð2ÞBBðΔk1Þ and approaches the uncorrelated case of

ḡð2ÞBBðΔk1 ≫ σBBÞ ¼ 1 for large values of Δk1 (see [21]
for a full discussion of the relationship between various
correlation functions).
We also measure the collinear (CL) three-atom correla-

tion function [shown in Figs. 2(d)–2(f)], defined analo-

gously as ḡð3ÞCLðΔk1;Δk2Þ, where now Δk1 ¼ jk3 − k1j and
Δk2 ¼ jk3 − k2j. A surface plot of this function, measured
for the Bragg halo with maximum mode occupancy, is

shown in Fig. 2(h). Like ḡð3ÞBBðΔk1;Δk2Þ, this full correla-
tion function also contains other many-body correlations:

for example, ḡð3ÞCLðΔk1; 0Þ [red line in Fig. 2(h)] will

asymptotically approach ḡð2ÞCLð0Þ (the two-atom collinear

0

0.1

0.2

-0.1

-0.2
0.9 0.95

0

1

2

nu
m

be
r 

of
 a

to
m

s

1

FIG. 1. Atomic momenta as measured by the quantum many-
body momentum microscope. Individual momenta of detected
atoms are reconstructed in 3D momentum space, with the main
image showing the collision halo, with dense (yellow) patches on
the north and south poles showing unscattered atoms from the
pair of colliding condensates. The highlighted balls and arrows
are an illustration of the underlying microscopic interactions—
the binary s-wave collisions. The 2D histograms below show an
equatorial slice through the experimental data, where the red
arrows k1, k2, and k3 indicate three arbitrarily chosen momenta
for which, e.g., three-atom correlations can be analyzed via
coincidence counts. Experimental data from ten runs is shown,
which approximates the density present in a single halo, given our
detection efficiency of ∼10%. Individual atoms can be seen in the
magnified inset, represented as 2D Gaussians with a width equal
to the detector resolution. The size of the balls representing the
individual atoms on the main 3D image are not to scale.
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correlation function), while ḡð3ÞCLðΔk1;Δk2 ≫ σCLÞ (blue

line) will yield ḡð2ÞCLðΔk1Þ [21]. Figures 2(g) and 2(h)
therefore show a full characterization of the hierarchy of
all three-body and two-body correlation functions present
in our system.
Our collisional halo is an example of a quantum many-

body system which, in the spontaneous scattering regime,
satisfies Wick’s factorization scheme [21]. This requires
knowledge of both the normal and anomalous second-
order operator moments in momentum space, nk;kþΔk ¼
hâ†kâkþΔki and mk;−kþΔk ¼ hâkâ−kþΔki, with â†k and âk
being the respective mode creation and annihilation oper-
ators, and the diagonal element of nk;kþΔk giving the
average mode occupancy nk ≡ nk;k. Knowledge of these
quantities is sufficient to reconstruct all higher-order
correlation functions and thus, completely solve the
many-body problem for our system. Here, the anomalous
occupancy mk ≡mk;−k (related to the anomalous Green’s
function in quantum field theory) describes the pairing
field amplitude between atoms with equal but opposite
momenta and is similar to the expectation value of the
Cooper pair operator in the Bardeen-Cooper-Schrieffer
theory of superconductivity, although in our case, the
pairing is between two identical bosons.
To examine these factorization properties further, we

analyze the dependence of peak correlation amplitudes on
the peak halo mode occupancy nk0

and compare them with

theoretical predictions. The theory relies on the relationship
between the peak anomalous occupancy jmk0

j and nk0
:

jmk0
j2 ¼ nk0

ðnk0
þ 1Þ [21]. In Fig. 3(a), we plot the

measured peak back-to-back correlation amplitude between

two-atoms ḡð2ÞBBð0Þ, for values of average mode occupancy

n≃ nk0
that span more than 2 orders of magnitude. ḡð2ÞBBð0Þ

is extracted by fitting ḡð2ÞBBðΔkÞ with a Gaussian (for details

and plots, see [21]). From analytic theory, we expect ḡð2ÞBBð0Þ
to scale with n as [21]

ḡð2ÞBBð0Þ ¼ ðn2k0
þ jmk0

j2Þ=n2k0
≃ 2þ 1=n: ð1Þ

This relation is plotted as the dashed line in Fig. 3(a), which
matches the data well considering that it is a no free
parameters fit. For comparison, we also plot the peak

collinear correlation between two atoms, ḡð2ÞCLð0Þ, shown by
squares in Fig. 3(a) and extracted from ḡð2ÞCLðΔkÞ in the same

way as ḡð2ÞBBð0Þ. We see values of ḡð2ÞCLð0Þ≃ 1.5, seemingly
independent of the mode occupancy. This trend is expected
theoretically, although in the limit of perfect resolution, we

would expect ḡð2ÞCLð0Þ ¼ 2 (as in the Hanbury Brown–Twiss
effect [10,56]) for all values of n.
From the measured ḡð2ÞBBð0Þ and ḡð2ÞCLð0Þ at each n, we are

able to extract the key nontrivial component of all higher-
order correlations in the scattering halo—the absolute value
of the average anomalous occupancy jmj≃ jmk0

j. This is

Δk
1

1
2

3

1
2

3

Δk
2

1

2

3

Δk
1

1,3,2

1
3

2

Δk
2

1
3

2

(a) (b) (c) (d) (f)(e)

50

40

30

20

10

0

3

2

(g) (h)

30

20

10

5

4

3

2

1

0.00
0.06

0.12
0.18

0.24

0.00
0.04

0.08
0.12

0.16

0.00
0.06

0.12
0.18

0.24

0.00
0.04

0.08
0.12

0.16

FIG. 2. Three-body momentum correlation functions. The various back-to-back (a)–(c) and collinear (d)–(f) correlation functions
between three atoms in the scattering halo, with the maximum expected value of each correlation function indicated. (g) Surface plot
showing the correlation function between two collinear and one back-to-back atom ḡð3ÞBBðΔk1;Δk2Þ is shown for the s-wave halo that has
a mean occupation of n ¼ 0.010ð5Þ atoms per mode. The red and blue solid lines show cases (a) and (b), respectively [21], while the

green solid line is the 1D Gaussian fit used to extract ḡð3ÞBBð0; 0Þ. (h) The correlation function between three collinear atoms

ḡð3ÞCLðΔk1;Δk2Þ is shown for the s-wave halo with n ¼ 0.44ð2Þ. The red and blue solid lines show cases (d) and (e), respectively, while

the green solid line is the 1D Gaussian fit used to extract ḡð3ÞCLð0; 0Þ [21]. Insets show visual representations of the relevant cases at four
selected points on each plot.
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found through the relation jmk0
j2=n2k0

¼ 2C2 − 1, where

C2 ≡ ḡð2ÞBBð0Þ=ḡð2ÞCLð0Þ. Using the data of Fig. 3(a) to
calculate C2, we plot ð2C2 − 1Þ1=2 ≃ jmj=n in Fig. 3(b).
A value of jmj > n is necessary for any system to exhibit
nonclassical (quantum) behavior, such as two-mode quad-
rature squeezing, Einstein-Podolsky-Rosen quadrature-
entanglement [57], and Bell inequality violation [58].
The fact that we measure values of jmj=n > 1 for all n
(with jmj=n ≫ 1 for smallest n) is a further demonstration
of the strong quantum nature of our system. Since all order
correlation functions for this system can be expressed as a
function of n and jmj, measuring these parameters is
essentially equivalent to solving the many-body problem
for the collisional halo.
Following a similar analysis for the peak three-atom

back-to-back correlation amplitude [21], extracting

ḡð3ÞBBð0; 0Þ from Gaussian fits to ḡð3ÞBBðΔk;ΔkÞ, we plot these
peak values as a function of n in Fig. 3(c). Theoretically, we

expect ḡð3ÞBBð0; 0Þ to scale with jmj and n as [21]

ḡð3ÞBBð0; 0Þ ¼ ð2n3k0
þ 4nk0

jmk0
j2Þ=n3k0

≃ 6þ 4=n: ð2Þ

This reflects the enhancement in the correlation amplitude
due to both the back-to-back and collinear correlations
[21]. In Fig. 3(c), we plot Eq. (2) as a dashed green line,
which agrees quite well with the experimental data.

Additionally, we can construct ḡð3ÞBBð0; 0Þ from our

measured values of C2, through the relation ḡð3ÞBBð0; 0Þ ¼
8C2 − 2. We plot these values in Fig. 3(c), which match the
theory well. This is a direct demonstration of how lower-
order correlation functions can be used to construct higher-
order correlation functions, showing that measuring a finite

number of correlation functions can be operationally
equivalent to solving the many-body problem.
The low probability associated with four or more atom

coincidence events means that we are unable to perform a
full, quantitative analysis of the hierarchy of fourth-
and higher-order correlation functions. However, we are
able to measure the back-to-back correlation function

ḡð4ÞBBðΔk1;Δk2;Δk3Þ for four atoms, two on each opposite
side of the halo [21], for n ¼ 0.31ð12Þ. This yields

ḡð4ÞBBð0; 0; 0Þ ¼ 70ð40Þ, compared to the theoretically

expected value of ḡð4ÞBBð0;0;0Þ≃24þ24=nþ4=n2≃143
for this mode occupancy [21].
An important feature of our BEC collision experiments

compared to previous work [10,11] is that we are able to
explore a much larger parameter space, including relatively
low values of n and small correlation lengths [21]. Because

of this, the values of ḡð2ÞBBð0Þ that we measure greatly exceed
the maximum possible collinear correlation value of

ḡð2ÞCLð0Þ ¼ 2. Thus our results are the first measurements

in the regime ḡð2ÞBBð0Þ ≫ ḡð2ÞCLð0Þ. This is a violation of the
simplest formulation of the Cauchy-Schwarz inequality [11]
for our system, which dictates that classically, we would

be restricted to ḡð2ÞBBð0Þ ≤ ḡð2ÞCLð0Þ. All previous similar
measurements with ultracold atoms were limited to peak

correlation amplitudes ḡð2ÞBBð0Þ≃ ḡð2ÞCLð0Þ [10,11].
This meant that they were only able to show a violation
of the Cauchy-Schwarz inequality for volume-integrated
atom numbers, rather than bare peak correlations [21].

Therefore, our measurement of ḡð2ÞBBð0Þ ≫ ḡð2ÞCLð0Þ, with

C2 ¼ ḡð2ÞBBð0Þ=ḡð2ÞCLð0Þ > 100, represents a more straightfor-
ward and much stronger violation of the Cauchy-Schwarz
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FIG. 3. Peak two- and three-atom correlation amplitudes and anomalous occupancy jmj vs halo mode occupancy n. (a) The measured

peak two-atom back-to-back and collinear correlation amplitudes ḡð2ÞBBð0Þ (blue circles) and ḡð2ÞCLð0Þ (grey squares), respectively, plotted
against the average halo mode occupancy (n) for different halos. The dashed (blue) line shows the analytic prediction of Eq. (1). We

expect theoretically that ḡð2ÞCLð0Þ ¼ 2 for all n, but due to the finite resolution of the detector and the bins used to calculate the correlation

function, this is reduced slightly. The dotted line shows the mean value of ḡð2ÞCLð0Þ. (b) The quantity ð2C2 − 1Þ1=2 ≃ jmj=n [where

C2 ≡ ḡð2ÞBBð0Þ=ḡð2ÞCLð0Þ], with jmj the anomalous occupancy, is plotted against n along with the theoretical prediction (dashed red line) of
jmj=n ¼ ð1þ 1=nÞ1=2. The horizontal dotted line at unity is drawn for reference, showing that jmj > n for all our data points.

(c) ḡð3ÞBBð0; 0Þ vs n, with green diamonds showing experimental data [extracted from fits to ḡð3ÞBBðΔk;ΔkÞ, as shown by the green line in
Fig. 2(g)] and the dashed line showing the theoretical prediction of Eq. (2). Red circles are reconstructed using experimental data for C2.
Error bars for all three plots show the combined statistical and fit uncertainties [21].
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inequality (cf. the maximum value of the corresponding
correlation coefficient C2 ≃ 1.2 measured in Ref. [11]). In
fact, to the best of our knowledge even for optical experi-
ments the largest value measured is C2 ≃ 58 [21,59],
meaning that our result of C2 > 100 is a record for any
source.
The Cauchy-Schwarz inequality can also be formulated

for higher-order correlation functions. For three-atom cor-
relations in our system, it states ḡð3ÞBBð0; 0Þ ≤ ðḡð2ÞCLð0ÞÞ3=2
[18]. Again, we violate this inequality for all data in Fig. 3,
with a maximum violation of ≃100.
To summarize, we have used a quantum many-body

momentum microscope to analyze the spontaneous s-wave
scattering halos of correlated atom pairs with a range of halo
mode occupancies n spanning over 2 orders of magnitude.

We measured the third-order correlation functions ḡð3ÞBB and

ḡð3ÞCL and confirmed the nontrivial many-body nature of the
correlations present. Unlike previous similar measurements,
we were able to extract the absolute value of the anomalous
occupancy jmj as a function of n. jmj and n are all that is
required for understanding and predicting all higher-order
correlation functions in this system, hence solving the
quantum many-body problem in this case. We have also
demonstrated a high degree of violation of the classical
Cauchy-Schwarz inequality for both two and three atom
correlations. This is the first measurement for three atoms,
while our two atom result beats the only previous experiment
with atoms [11] by nearly 2 orders of magnitude.
This demonstrated ability to measure higher-order quan-

tum correlations in a complex many-body system (an s-wave
scattering halo) means that a momentum microscope will be
a valuable tool for probing other many-body effects in
quantum simulators that possess nontrivial correlations
(although this may require additional considerations [21]).
Such effects include many-body localisation and glassy
dynamics [60], unconventional superconductivity [61], uni-
versal three-body recombination, and Efimov resonances
[62]. Other possible applications include the use of such a
microscope as a direct dynamical probe of nonequilibrium
many-body effects in TOF expansion.
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